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1 Fundamental Tools of Probability Theory

Law of Total Probability: if B1, . . . , Bk partition the sample space Ω:

P (A) =

k∑
i=1

P (A|Bi)P (Bi)

Bayes Rule/theorem: if X and Y are random variables

pX|Y (x|y) =
pXY (x, y)

pY (y)

=
pY |X(y|x)pX(x)

pY (y)

=


pY |X(y|x)pX(x)∫
pY |X(y|x)pX(x)

if continuous
pY |X(y|x)pX(x)∑

x′ pY |X(y|x′)pX(x′) if discrete

Law of Total Expectation/Tower Law: E[g(X,Y )] = E[E[g(X,Y )|X]].

Law of Total Variance:

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X])

Var(Y ) = E[Var(Y |X1, X2)] + E[Var(E[Y |X1, X2]|X1)] + Var(E[Y |X1])

If A1, . . . , An partition the whole outcome space then

Var(X) =

n∑
i=1

Var(X|Ai)Pr(Ai) +
n∑
i=1

E[X|Ai]2(1− Pr(Ai))Pr(Ai)

− 2

n∑
i=2

i−1∑
j=1

E[X|Ai]Pr(Ai)E[X|Aj ]Pr(Aj)

Law of Total Covariance:

Cov(X,Y ) = E(Cov(X,Y )|Z) + Cov(E(X|Z),E(Y |Z))Cov(X,Y ) = Cov(X,E(Y |X))

Moment Generating Functions: a powerful function that can be used to obtain polynomial moments of
a random variable

MX(t) = E(etX) = 1 + tE(X) +
t2E(X2)

2!
+
t3E(X3)

3!
+ . . .

The j-th moment of X is then:

E(Xj) =M (j)(0) =
djMX(t)

dtj

∣∣∣
t=0

Properties

1. Location-scale: MaX+b = ebtMX(at)

2. Multiplicity: X ⊥ Y =⇒ MX+Y (t) =MX(t)MY (t)

3
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1.1 Useful facts of common parametric distributions

Normal Distribution:

1. Sums of Normals are Normal: For X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) independent, and a1, a2 ∈ R,

a1X + a2Y ∼ N(a1µ1 + a2µ2, a
2
1σ

2
1 + a22σ

2
2)

2. Connection to Chi-Square: if X1, . . . , Xn
iid∼ N(0, 1), then Z1 = X2

1 ∼ χ2
1 and Zn =

∑n
i=1X

2
i ∼ χ2

n.

3. Stein’s Lemma: useful for calculating higher order moments of normal distributions. For X ∼ N(θ, σ2):

E(g(X)(X − θ)) = σ2E[g′(X)]

In action: : E[X3] = E(X2(X − θ + θ)

= E[X2(X − θ)] + θE[X2]

= 2σ2E[X] + θ(σ2 + θ2)

= 3σ2θ + θ3

MVN Distribution:

1. Linear transformations are MVN:

Y = CX + b ∼ N(Cµ+ b, CΣCT )

2. Uncorrelated ⇐⇒ Independent: Cor(Xi, Xj) ⇐⇒ Xi ⊥ Xj

3. Normal marginal: Suppose X = (X1, X2), where X1 ∈ Rn1 and X2 ∈ Rn2 . µ = (µ1, µ2), and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, then:

Xi ∼ N(µi,Σii)

4. Normal conditional:

X1|X2 ∼ Nn1
(µ1 +Σ12Σ

−1
22 (X2 − µ2),Σ11,2)

Where Σ11,2 = Σ11 − Σ12Σ
−1
22 Σ21

Chi-Square Distribution:

1. Centered and scaled MVN is Chi-Square: if Y ∼ N(µ,Σ) of dimension n, then

(Y − µ)TΣ−1(Y − µ) ∼ χ2
n

2. Projection property: if Y ∼ N(µ, I) is n-dimensional MVN and P is a rank-p projection matrix

(Y − µ)TP (Y − µ) ∼ χ2
p

3. Special case of Gamma: χ2
m ≡ Gamma

(
m
2 , 2

)
.

4. Sample variance is Chi-square under normal model: when Xi ∼ N(µ, σ), (n− 1)
S2
n

σ2 ∼ χ2
n−1

Uniform Distribution:

1. Scaled minimum of uniforms is exponential: IfX1, . . . , Xn ∼ Unif(0, 1), then U = n×min(X1, . . . , Xn) ∼
Exp(1)

4



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

2. Probability integral transform: suppose X has continuous distribution with CDF FX , then the random
variable Y := FX(X) ∼ Unif(0, 1).

Poisson Distribution:

1. Sum of Poissons are Poisson: X1, . . . , Xn ∼ Pois(λi), then
∑n
i=1Xi ∼ Pois (

∑n
i=1 λi)

2. Connection to negative binomial: NB distribution can be considered a Poisson-Gamma mixture where
X|λ ∼ Pois(λ) and λ ∼ Gamma(r, p/(1− p)).

Exponential Distribution

1. Memoryless property: if X ∼ Exp(λ), then

P (X > x+ y|X > x) = P (X > y)

2. Absolute Difference is Exponential: if X,Y ∼ Exp(1), then |X − Y | ∼ Exp(1)

3. Minimum is Exponential: X1, . . . , Xn ∼ Exp(λ), then min(X1, . . . , Xn) ∼ Exp(nλ)

4. Ratio is uniform: X,Y ∼ Exp(1), then X
X+Y ∼ Unif(0, 1)

Geometric Distribution

1. Memoryless property: if X ∼ Geo(p), then

P (X > x+ y|X > x) = P (X > y)

2. Connection to negative binomial distribution: when parametrized a certain way, NB models either the
number of failures before specified number of successes. Thus, the sum of r independent geometric
random variables with parameter p is equivalent to NB(r, p).

Gamma Distribution:

1. Sums of gammas are gamma: For X1, . . . , Xn ∼ Gamma(αi, β),

n∑
i=1

Xi ∼ Gamma

(
n∑
i=1

αi, β

)

2. Inverse Gamma Distribution: has pdf f(x, α, β) = βα

Γ(α)x
−α−1 exp(−β/x). Has mean β

α−1 and mode
β
α+1 .

Multinomial Distribution: describes the frequency of observations over k categories:

1. Sum of independent multinomials (with same parameters) are multinomial: X ∼ Mk(n; p1, . . . , pk),
Y ∼Mk(m; p1, . . . , pk),

X + Y ∼Mk(n+m; p1, . . . , pk)

2. Block decomposition: if we decompose X1, . . . , Xk into r blocks Bj , they are conditionally independent
given their block sum Sj :

Bj |Sj ∼Mkj−1+1,...,kj

Sj ; pkj−1+1∑kj
ℓ=kj−1+1 pℓ

, . . . ,
pkj∑kj

ℓ=kj−1+1 pℓ


3. Negative correlation between entries: Cov(Xi, Xj) = −npipj

4. MLE for pj : if goal is to estimate probability of j-th category, requires optimization under constraint

that
∑k
i=1 pi = 1. Using Lagrange multipliers, we obtain p̂j =

Xj

n

5. Dirichlet prior permits Bayesian inference on multinomial distribution.

5



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

6



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

1.2 Order Statistics

Marginal and Joint Distribution of Order Statistics:

1. Distribution of j-th order statistic:

pY(j)
(y) =

n!

(j − 1)!(n− j)!
FX(y)j−1 (1− FX(y))

n−j
pX(y)

2. Joint distribution of ℓ and j-th order statistic:

pY(j),Y(ℓ)
(y, z) =

n!

(j − 1)!(ℓ− j − 1)!(n− ℓ)!
Fx(y)

j−1pX(y)(FX(z)− FX(y))(ℓ−j−1)pX(z)(1− FX(z))(n−ℓ)

3. Order statistics of Unif(0, 1) are Beta

Y(j) ∼ Beta(j, n− j + 1)

4. Spacings between order statistics of Unif(0, 1) are Beta

Wi = Y(i) − Y(i−1) ∼ Beta(1, n)

1.3 Identities

Calculus tricks:

1. Handy Derivative Rules

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

d

dx

f(x)

g(x)
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2

d

dx
[f−1(x)] =

1

f ′(f−1(x))

2. Integration by parts:
∫
udv = uv −

∫
vdu

Fundamental Theorem of Calculus/Leibniz Rule:

d

dx

∫ b(x)

a(x)

f(x, t)dt = f(x, b(x)) · d
dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

Binomial Theorem: For any real numbers, x, y and integer n ≥ 0

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

Layer cake representation: for X a non-negative RV

E[X] =

∫ ∞

0

P (X ≥ t)dt

Woodbury identity: (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Blockwise matrix inversion: the inverse of a blocked matrix is(
A B
C D

)−1

=

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)

7
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Taylor Expansion of a function: for f infinitely differentiable, Taylor expansion about x0:

f(x)− f(x0) = f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + . . . =

∞∑
n=0

f (n)(x0)(x− x0)
n

n!

Lr(P ) space: set of all functions f : X → R such that ||f ||Lr(P ) =
[∫

|f(x)|rdP (x)
]1/r

<∞.
Geometric series:

• Finite: for r ̸= 1,
∑n
i=0 ar

i = a
(

1−rn+1

1−r

)
• Infinite: if r < 1,

∑∞
i=0 ar

i = a
1−r

Exponential sums

• Finite:
∑N−1
n=0 p

ieinx = 1−eiNx

1−eix

• Infinite:
∑∞
n=0 p

neinx = 1
peix−1

Definitions of e

1. Limit definition: lim
n→∞

(
1 + x

n

)n
= ex

2. Power series:
∑
n≥0

x
n! = ex

1.4 Useful Inequalities

Markov Inequality: useful for probability tail bounds, if X ≥ 0, t > 0

P (X ≥ t) ≤ E[X]

t

Chebyshev Inequality: for k in natural numbers

P (|X − E(X)| ≥ t) ≤ E(|X − E(X)|k)
tk

=⇒ P (|X − E(X)| ≥ t) ≤ Var(X)

t2

Chernoff bound: if X has MGF MX .

P{X − E(X) ≥ t} ≤ inf
λ>0

MX−µ(λ)

eλt

logP{X − E(X) ≥ t} ≤ −sup
λ>0

{λt− logMX−µ(λ)}

Cauchy-Schwarz Inequality:

|E(XY )|2 ≤ E(X2)E(Y 2)

Jensen Inequality: for RV X and f convex

f(E(X)) ≤ E(f(X))

Triangle/Reverse Triangle inequality:

||X + Y || ≤ ||X||+ ||Y ||∣∣∣||X|| − ||Y ||
∣∣∣ ≤ ||X − Y ||

Integration by Parts: if g and h are cadlag functions with support [a, b] (CDFs) it holds that∫
(a,b]

g(u)dh(u) +

∫
(a,b]

h(u)dg(u) = g(b)h(b)− g(a)h(a)

Max-Min Inequality: supz infw f(z, w) ≤ infw supz f(z, w)

8
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2 Convergence Theory

Convergence in probability: a sequence of random variables Xn converges in probability to X if

P (||Xn − θ|| > ϵ)
n→∞−→ 0

Weak Convergence: a sequence of random variables converges weakly/in distribution/in law iff for all
bounded continuous functions f : Rd → R:

E[f(Xn)] → E[f(X)] as n→ ∞

Portmanteau Lemma: characterizes different definitions of weak convergence. For Xn as sequence of
random variables and X a random variable, TFAE

1. E[f(Xn)] → E[f(X)] as n→ ∞ for all bounded continuous functions f .

2. CDF: for all continuity points t ∈ Rd, P (Xn ≤ t) → P (X ≤ t) as n→ ∞

3. Levy Continuity (Characteristic Functions): for all t ∈ Rd, E[exp(itTXn)]
n→∞−→ E[exp(itTX)].

4. Cramer-Wold: for all t ∈ Rd, tTXn ⇝ tTX

2.1 Convergence Theorems

Continuous Mapping Theorem: Let Xn ∈ Rd be a sequence of random variables and let g : Rd → Rm be
a continuous function at every point such that P (X ∈ C) = 1. Then the following are valid

(i) if Xn ⇝ X, g(Xn)⇝ g(X).

(ii) if Xn
p→ X, then g(Xn)

p→ g(X).

(iii) if Xn ⇝ X and ||Xn − Yn||
p→ 0, Yn ⇝ X.

(iv) If Xn ⇝ X and Yn
p→ c, then (Xn, Yn)⇝ (X, c).

Slutsky’s Lemma: Let Xn be a Rd-valued sequence of random variables that converges weakly to X. If
Rd-valued sequence Yn converges to c (in prob or a.s.) then the following are valid:

(i) Xn + Yn ⇝ X + c.

(ii) Xn · Yn ⇝ cX.

(iii) if c ̸= 0, Xn

Yn
⇝ X

c .

Law of Large Numbers: describes the consistency of sample means. For X1, . . . , Xn
iid∼ P s.t. EP (|X|) <

∞ and letting X̄n = 1
n

∑n
i=1Xi, we have

X̄n
p→ EP [X]

2.2 Central Limit Theorems

Levy’s Central Limit Theorem: describes the limiting distribution of univariate sample means. For

X1, . . . , Xn
iid∼ P s.t. EP (|X|) <∞ and EP (X2) <∞, then for σ2

P := VarP (X):

√
n(X̄n − EP (X))⇝ N(0, σ2

P )

Multivariate Central Limit Theorem: generalizes Levy’s CLT to multivariate iid observations.

Suppose X1, . . . , Xn
iid∼ P with support in Rd and E[||X||2] <∞. Then

√
n(X̄n − µ)⇝ N(0,Σ)

9
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Where µ := E[X] and Σ := EP [(X − µ)(X − µ)T ].

Lindeberg Feller Central Limit Theorem: generalizes Levy CLT to setting where observations are inde-
pendent but not necessarily identically distributed.

Let {Xn
ni} be an independent collection of R-valued random variables for each n. Let µni := E[Xni] and

σ2
ni := Var(Xni) exist and be finite. Define σ2

n :=
∑n
i=1 σ

2
ni > 0 and Yni =

(Xni−µni)
σn

. If the Lindeberg
condition

n∑
i=1

E[Y 2
ni1(|Yni ≥ ϵ|)] n→∞−→ 0 for all ϵ > 0

or alternatively the Lyapunov condition holds

n∑
i=1

E[|Y 2+δ
ni |] n→∞−→ 0 for some δ > 0

then

n∑
i=1

Yni ⇝ N(0, 1)

We apply the LF-CLT to demonstrating ASN of OLS estimator in Example ??.

2.3 Delta Methods

PDF of transformations of Random Variables (parametric):

1. Univariate: LetX have pdf fX(x) and let Y = g(X), where g is monotone. Suppose fX(x) is continuous
on X and g−1(y) has a continuous derivative on Y. Then pdf of Y is:

fY (y) =

fX(g−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣ y ∈ Y

0 else

2. Multivariate: suppose (X,Y ) jointly varies according to some pX,Y and (U, V ) := (T1(X), T2(Y )) is
unknown for T being 1-1 maps.

pU,V (y) = pX,Y (T
−1(x, y))

∣∣∣∣∣det
(
∂T−1

1 (u,w)
∂u

∂T−1
2 (u,w)
∂u

∂T−1
1 (u,w)
∂w

∂T−1
2 (u,w)
∂w

)∣∣∣∣∣
Delta Method: functions of an estimator with known distribution:

1. Univariate (R → R): suppose f : R → R is differentiable at ψ0, and rn(ψn − ψ0)⇝ Z holds, then

rn(f(ψn)− f(ψ0))⇝ f ′(ψ0) · Z

2. Multivariate (Rd → R): if f : Rd → R is differentiable at ψ0 ∈ Rd, and rn(ψn − ψ0)⇝ Z holds, then

rn(f(ψn)− f(ψ0))⇝ ⟨Z,∇f(ψ0)⟩

3. Multivariate (Rd → Rp): suppose f : Rd → Rp is differentiable at ψ0, meaning there exists an Rp×Rd

Jacobian matrix Jf =

∇f1
...

∇fp

. Suppose that rn(ψn − ψ0)⇝ Z. Then it holds that:

rn[f(ψn)− f(ψ0)]⇝ Jf · Z

10
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4. For influence functions: Suppose ψn ∈ Rd is an asymptotically linear estimator of ψ0 ∈ Rd, implying
ψn,j is ALE for ψ0,j for all j ∈ {1, . . . , d}. Suppose f : Rd → R is differentiable (at ψ0). Then f(ψn)
is itself an asymptotically linear estimator for f(ψ0) with influence function equal to:

ϕ̃P0 : x→ ⟨∇f(ψ0), ϕP0(x)⟩

Where ϕP0(x) is the influence function of ψn. This implies

f(ψn)− f(ψ0) =
1

n

n∑
i=1

⟨∇f(ψ0), ϕP0
(Xi)⟩+ oP (n

−1/2)

A good Delta method example is shown in Example ??.

2.4 Stochastic Order Notation and Prokohorv’s Theorem

Stochastic Order Notation: helps us compare the magnitude of two sequences of random variables Xn

and Rn:

1. Big O: Xn = OP (Rn) means Xn is stochastically bounded, or within a multiplicative constant of Rn:

P

(∣∣∣∣Xn

Rn

∣∣∣∣ > δ

)
< ϵ ∀ n > N

2. Little o: Xn = oP (rn) means Xn grows more slowly than rn, and implies convergence of the ratio to 0.

Xn

rn
= oP (1)

Operations on Stochastic Order Notation

1. Decomposition: Xn = oP (rn) iff Xn = Yn · rn s.t. Yn = oP (1)

2. Decomposition: Xn = OP (Rn) iff Xn = Yn ·Rn s.t. Yn = OP (1)

3. Addition: oP (1) + oP (1) = oP (1)

4. Addition: oP (1) +OP (1) = OP (1)

5. Multiplication: OP (1) ·OP (1) = OP (1)

6. Multiplication: oP (1) ·OP (1) = oP (1)

7. Division: [1 + oP (1)]
−1 = OP (1)

8. Convergence in probability implies uniformly tight: Xn = oP (1) =⇒ Xn = OP (1)

Prokhorov’s Theorem: an analog of the Bolzano-Weierstrass theorem for sequences of random variables.

1. (Weak convergence implies uniformly tight): If Xn ⇝ X, then Xn = OP (1).

2. (Uniformly tight implies subsequence that converges weakly): If Xn = OP (1), there exists a subse-
quence {Xnj

} ⊂ Xn s.t. Xnj
⇝ X for some X.

11
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3 Decision Theory

Decision theory is a general framework that unites hypothesis testing and estimation.
A decision function is a probability of an D(a, x) = d(a|X = x) is the probability of an action given data.
The loss L(a, θ) quantifies the quality of a decision at θ (could be squared error loss for estimation, 0-1

loss for hypothesis testing).
The risk is the expected loss, marginal over randomness in the data space and action space:

R(D, θ) =

∫
X

∫
A
L(a, θ)D(a|x)Pθ(x)

The Bayes risk is the risk marginal over the prior, Π, on the distribution of the parameter θ ∈ Θ.

r(D,Π) =

∫
R(D, θ)dΠ(θ)

3.1 Bayes rules

A Bayes rule DΠ is optimal with regard to the Bayes risk

r(DΠ,Π) = inf
D∈D

r(D,Π) = inf
D∈D

EΠ

[∫
A
L(a, θ)D(da|x)

∣∣∣∣∣X = x

]
To find Bayes rule under a convex loss, we know the action is deterministic. It is best to consider the action
that minimizes the Bayes risk function:

fx : a→ E[ℓ(a, ψ(θ))|X = x]

Here are some Bayes rules for common loss functions:

1. Squared error loss: L(a, θ) = {a− ψ(θ)}2, Posterior Mean: TΠ = E(ψ(θ)|X = x]

2. Absolute Deviation loss: L(a, θ) = |a− ψ(θ)|, Posterior Median: TΠ = median(ψ(θ)|X = x).

3. Weighted squared error loss: L(a, θ) = w(θ){a−ψ(θ)}2, Weighted posterior mean: TΠ = E[w(θ)ψ(θ)|X=x]
E[w(θ)|X=x]

4. 0-1 loss: L(a, θ) = I(a ̸= ψ(θ)), Maximum Posterior Probability: TΠ = argmax
a

Pr(ψ(θ) = a|X = x)

3.2 Minimax rules

Minimaxity: the minimax framework seeks decision rules that minimize the maximal risk over θ ∈ Θ.
We can find minimax rules by finding Bayes rules for priors that yield constant risk with respect to θ.

Admissibility: a good decision rule is one for which there does not exist a uniformly better one. A rule
D is inadmissible if there exists another rule D̃ such that

R(D̃, θ) ≤ R(D, θ) for all θ ∈ Θ, and

R(D̃, θ̃) < R(D, θ̃) for some θ̃ ∈ Θ

The rule is admissible otherwise.
For a given prior Π, a rule DΠ is unique Bayes if for all θ ∈ Θ, a rule is Bayes iff it equals DΠ almost

everywhere.
A rule D∗ is unique minimax if for all θ ∈ Θ, a rule is minimax iff it equals D∗ almost everywhere.
Turns out unique Bayes/minimax rules are admissible!

James-Stein Estimator: when d ≥ 3 andX1, . . . , Xn
iid∼ N(θ, σ2Id), the sample mean is an inadmissible

estimator under squared error loss. This is illustrated by the James-Stein estimator

T JS : x→

{(
1− (d−2)

n||x̄n||2

)
x̄n if x̄n ̸= (0, . . . , 0)

0 if x̄n = (0, . . . , 0)

The proof relies on Stein’s Lemma, and is shown in Example 9.8.

12
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3.3 Minimaxity

Note that the risk of a decision (estimator, hypothesis test) is the loss integrated over a measure. One
quality that can judge the quality of a decision rule by is the maximal risk it attains over a statistical model.
The minimax rule minimizes the maximal risk over a statistical model P:

T ∗ = argmin
T∈T

sup
P∈P

R(T, P )

Minimax rate optimality: while we can’t always derive the minimax estimator exactly, we can find sequences
of estimators Tn that achieve the minimax optimal rate, i.e, don’t dominate the minimax

lim inf
n→∞

inf
T∈T

sup
Q∈Q

R(T,Qn)

sup
Q∈Q

R(Tn, Qn)
> 0

Our goal now is to find lower bounds on the minimax risk. We can do so with the following three strategies

1. Bayes risk under LFP: the minimax risk is bounded below by the Bayes risk, and the bound is tightest
with the least favorable prior

sup
Π

inf
T∈T

r(T,Π) ≤ inf
T∈T

sup
P∈P

R(T, P )

2. Le Cam’s Method: Define the following quantities

(a) Discrepancy : measures difference in estimation procedures. d(P1, P2) = inf
a∈A

[L(a, P1) + L(a, P2)].

Point estimation under squared error loss yields

d(P1, P2) =
1

2
[ψ(P1)− ψ(P2)]

2

Estimating a function with integrated squared error loss gives

d(P1, P2) =
1

2

∫
[fQ1(x)− fQ2(x)]

2dx

(b) Testing affinity : measures distributional overlap

||p1 ∧ p2||1 =

∫
min

(
dP1

dν
(w),

dP2

dν
(w)

)
dν(w)

=

∫
min(p1, p2)dν

= 1− TV(P1, P2)

= 1− sup
A

|P1(A)− P2(A)|

(c) KL divergence: distance between distributions

KL(P1, P2) :=

{∫
log
(
dP1

dP2
(w)
)
dP1(w) if P1 << P2

+∞ else

Le Cam’s Method yields the following lower bound on the minimax risk

inf
T∈T

sup
P∈P

R(T, P ) ≥ 1

2
d(P1, P2)||p1 ∧ p2||1

≥ 1

4
d(P1, P2) exp(−KL(P1, P2))

See Example 9.4.
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3. Fano’s Method: letting η := min
j ̸=k

d(Pj , Pk) and P̄ := 1
N

∑N
j=1 Pj , we obtain

inf
T∈T

sup
P∈P

R(T, P ) ≥ η

2

[
1−

log 2 + 1
N

∑N
j=1KL(Pj , P̄ )

log(N)

]

≥ η

2

1− log 2 + max
j ̸=k

KL(Pj , P̄ )

log(N)


See Example 9.5.

4 Hypothesis Testing

4.1 Sufficiency, Minimal Sufficiency, Complete Sufficiency, Ancillarity

Sufficient statistic: given a distribution family P indexed by parameter θ, T (X) is a sufficient statistic

for θ if T (X) is sufficient to generate new data X∗ such that X∗ D
= X.

Fisher Neyman Factorization Theorem: T (X) is a sufficient statistic for θ in P iff the pdf of X factors
as

fθ(X) = gθ(T (X)) · h(X)

Minimal Sufficient Statistic: T ∗(X) is minimal sufficient statistic for P if for any sufficient statistic
T (X), there exists a function h(·), such that T ∗(X) = h(T (X)),

Lehmann-Scheffé Theorem: Suppose T (X) is sufficient. It is also minimal sufficient statistic if the
following statement holds

T (X) = T (Y ) ⇐⇒ fθ(y)

fθ(x)
is θ-free

Ancillary Statistic: A statistic V (X) is an ancillary statistic with respect to a distribution family
P = {Pθ : θ ∈ Ω} if the distribution of V (X) is θ-free.

Location-scale invariance properties: if P is a location-scale family (e.g., N(µ, σ2) because addition
and multiplication by a constant reduce them to the same distribution N(0, 1)), then any location-scale
invariant statistic is ancillary:

V (X1, . . . , Xn) = V (σX1 + µ, . . . , σXn + µ)

Complete statistic: T (X) is complete if

∀θ ∈ Ω Eθ(g(T )) = 0 =⇒ g(T ) = 0

Basu’s Theorem: if T (X) is complete and sufficient statistic, it is independent of any ancillary statistic.

Here is a list of complete sufficient statistics in broad families

(a) When X follow a k-parameter exponential family

fθ(x) = a(θ)eθ1T1(x)+···+θkTk(x)h(x), θ ∈ Ω ⊂ Rk

With natural parameter space Ω containing an open rectangle, then T (X) := (T1(X), . . . , Tk(X))
is complete.

14
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(b) When X is from a 2-parameter truncation family

fθ1,θ2(x) =
b(x)I(θ1 ≤ x ≤ θ2)

B(θ1, θ2)
∞ < x <∞

Where −∞ < θ1 < θ2 < ∞, b(x) > 0, B(θ1, θ2) =
∫ θ2
θ1
b(x)dx < ∞. Then T (X) = (X(1), X(n)) is

complete sufficient.

4.2 UMVUE

UMVUE: an estimator is UMVUE if it has minimal variance over all unbiased estimators.

Rao-Blackwell theorem: provides a way to compute the UMVUE and guarantees its uniqueness. Given
a sufficient statistic for θ, T (X), and an unbiased estimator of τ(θ), τ ′(X), then the following admits
the unique UMVUE

E[τ ′(X)|T (X)]

UMVUE supermarket: the easiest way to find a UMVUE. Suppose τ̂(X) is an unbiased estimator for
our target of interest τ(θ). If τ̂(X) depends on X through a complete sufficient statistic T (X), then
τ̂(X) is UMVUE for its own expectation, UMVUE for τ(θ).
Thus, if we can find a complete sufficient statistic, and find a function of the CSS ϕ : T → Ω such that
E[ϕ(T )] = τ(θ).

4.3 Common Tests

Suppose our objective is to test

H0 : θ ∈ Θ0 versus H1 : θ /∈ Θ0

Test function: ϕn : Xn → [0, 1] where 0 denotes deterministic fail to reject H0 and 1 denotes deter-
ministic reject H0.

Power function: probability of rejecting H0:

πn(θ) = Eθ[ϕn(X1, . . . , Xn)]

Neyman-Pearson Paradigm: choose the highest-power test under alternatives that controls the T1ER
under null:

(a) T1ER control at level α: sup
θ0∈Θ0

πn(θ0) ≤ α

(b) Higher power under H1: make πn(θ) are large as possible under H1.

Asymptotically level-α test:

lim sup
n→∞

πn(θ0) ≤ α for all θ ∈ Θ0

4.3.1 Two-point and One-Sided Alternative Tests

Neyman-Pearson Lemma: under a two-point hypothesis of H0 : θ = θ0 versus H1 : θ = θ1, the
likelihood ratio test is the uniform most powerful test, meaning it has the highest power among all
α-level tests:

ϕc(x) =


0 if f1(x)f0(x)

< c

1 if f1(x)f0(x)
> c

γ(x) if f1(x)f0(x)
= c

15
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Monotone likelihood ratio: suppose we are interested in testing one of the two sets of hypotheses (a)
H0 : θ = θ0 versus H1 : θ > θ0 or (b) H0 : θ ≤ θ0 versus H1 : θ > θ0. Se say that fθ(x) has strict
monotone likelihood ratio in sufficient statistic T (X) if for each pair θ1 < θ2 ∈ Ω, the LR is strictly
increasing as a function of T (X):

fθ2(x)

fθ1(x)
= gθ1,θ2(T (x)) ∀ θ1 < θ2 ∈ Ω

Under monotone likelihood ratio, the test based on the sufficient statistic T is the UMP test for the
hypotheses above

ϕ(t) =


0 if T (X) < cα

1 if T (X) > cα

γα if T (X) = cα

Where cα and γα chosen to satisfy:

Pθ0 [T > cα] + γαPθ0 [T = cα] = α

.

4.3.2 General Testing Strategies

Common tests: suppose θ = (ψ, η) where ψ ∈ Rm is the parameter of interest and η ∈ Rd−m is the
nuisance. WLOG assume Θ0 = {θ = (ψ, η) : ψ = 0}

(a) Wald test: reject H0 when ψn is far from its value under the null:

√
n(θn − θ)⇝ N(0, I−1

θ )

=⇒ n1/2[ψ̂ − ψ]⇝ N(0, A−1
θ ) by Woodbury Aθ = Iθ,11 − Iθ,12I

−1
θ,22I

T
θ,12

=⇒ n1/2A
1/2
θ [ψ̂ − ψ]⇝ N(0, Im) =⇒ nAθ[ψ̂ − ψ]⇝ χ2(m)

So an asymptotic α-level test is we reject H0 when nAθ[ψ̂ − ψ] is outside the (1− α) quantiles of
χ2(m).

(b) Likelihood Ratio test: the likelihood ratio test rejects H0 when inf
θ0∈Θ0

DKL(Pθ, Pθ0) is large.

inf
θ0∈Θ0

DKL(Pθ||Pθ0) = inf
θ0∈Θ0

Pθ[ℓθ − ℓθ0 ]

We base our test statistic on the empirical risk minimizer scaled by 2n:

Ln := 2n ·
(
Pn[ℓθ̂]− sup

θ0∈Θ0

Pn[ℓθ0 ]

)
Thus, the LRT compares the log likelihood of the unrestricted MLE to the log likelihood ratio of
the null restricted MLE. Under QMD model, the log-likelihood ratio affords the expansion

Ln = −2(θ̂0 − θ̂)T
n∑
i=1

ℓ̇θ̂(Xi)︸ ︷︷ ︸
=0

−(θ̂0 − θ̂)T
n∑
i=1

ℓ̈θ̃(Xi)(θ̂0 − θ̂)

= −
√
n(θ̂0 − θ̂)TPnℓ̈θ̃(Xi)

√
n(θ̂0 − θ̂)

= (
√
nIθ(θ̂0 − θ̂)T )I−1

θ

√
nIθ(θ̂0 − θ̂) + oP (1)

16
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where θ̃n is between θ̂0 and θ̂.
Also under H0, by asymptotic results of MLEs we have:

√
nIθ(θ̂0 − θ̂) =

√
nIθ(Pn − P0)

((
0

I−1
θ,22ℓ̇θ,2

)
− I−1

θ ℓ̇θ

)
+ oP (1)

=
√
n(Pn − P0)

((
Iθ,11 Iθ,12
Iθ,21 Iθ,22

)(
0

I−1
θ,22ℓ̇θ,2

)
−
(
ℓ̇θ,1
ℓ̇θ,2

))
+ oP (1)

=
√
n(Pn − P0)

((
−[ℓ̇θ,1 − Iθ,12I

−1
θ,22ℓ̇θ,2]

0

))
+ oP (1)

⇝

(
N(0, Aθ)

0

)
Aθ = Iθ,11 − Iθ,12I

−1
θ,22I

T
θ,12

Thus, under H0, we have Wilk’s Theorem:

Ln = (
√
nIθ(θ̂0 − θ̂)T )I−1

θ

√
nIθ(θ̂0 − θ̂) + oP (1)

⇝

(
N(0, Aθ)

0

)(
A−1
θ . . .
. . . . . .

)(
N(0, Aθ)

0

)
⇝ χ2(m)

Thus, an α-level test rejects when Ln exceeds the 1− α quantile of a χ2(m) distribution.

(c) Score test: heuristically, scores have mean zero Pθ ℓ̇θ0 . Idea is to reject if estimate of this expec-
tation: Pnℓ̇ψ0,η is far from 0. Define

Zn(θ) :=
√
nPnℓ̇θ

Note that based on the restricted MLE θ̂0 ∈ Θ0

Zn(θ̂0) = Zn(θ̂0) +
√
nPθ ℓ̇θ̂0 −

√
nPθ ℓ̇θ̂0

=
√
n(Pn − Pθ)ℓ̇θ̂0 +

√
n(Pθ ℓ̇θ̂0 − Pθ ℓ̇θ)

=
√
n(Pn − Pθ)ℓ̇θ︸ ︷︷ ︸

CLT

+
√
n(Pθ ℓ̇θ̂0 − Pθ ℓ̇θ)︸ ︷︷ ︸
Delta method

+
√
n(Pn − Pθ)(ℓ̇θ̂0 − ℓ̇θ̂)︸ ︷︷ ︸

Donsker

Under conditions on the score function, the third term is oP (1). By the multivariate delta method,
we have

Pθ ℓ̇(ψ, η̂0)− Pθ ℓ̇(ψ, η) = −
(
Iθ,12
Iθ,22

)
(η̂0 − η) + oP (n

−1/2)

Recalling that

η̂0 − η = I−1
θ,22(Pn − Pθ)ℓ̇θ,2 + oP (n

−1/2)

the above becomes

Pθ ℓ̇(ψ, η̂0)− Pθ ℓ̇(ψ, η) = −(Pn − Pθ)

(
Iθ,12I

−1
θ,22ℓ̇θ,2
ℓ̇θ,2

)
+ oP (n

−1/2)

Plugging into the earlier expansion we have

Zn(θ̂0) =
√
n(Pn − Pθ)

(
ℓ̇θ,1
ℓ̇θ,2

)
−

√
n(Pn − Pθ)

(
Iθ,12I

−1
θ,22ℓ̇θ,2
ℓ̇θ,2

)
+ oP (1)

⇝

(
N(0, Aθ)

0

)
By the continuous mapping theorem and Slutsky’s Lemma, under H0 we have:

Zn(θ̂0)I
−1

θ̂0
Zn(θ̂0)⇝ χ2(m)

Thus, an asymptotic α-level test compares the test statistic above to the 1−α quantile of a χ2(m)
distribution.
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4.4 Distribution under Alternatives and Local Power Analysis

Contiguity: we can only describe the behavior of statistics T (Xn
1 ) with respect to sequences of measures.

Contiguity generalizes the concept of absolute continuity to sequences of measures. We say Qn is
contiguous wrt Pn if for all sequences {An}∞n=1, Pn(An) → 0 =⇒ Qn(An) → 0. It is denotes by
Qn ◁ Pn.

Local Asymptotic Normality: the power of local asymptotic normality is it shows that sampling under
a local alternative is equivalent to sampling from a shifted null model.

Let hn be the local parameter for fixed θ. Suppose the model {Pθ : θ ∈ Θ} is differentiable in quadratic
mean (QMD) at θ. Then for every hn → h, the likelihood ratio affords the expansion:

log

n∏
i=1

pθ+hn/
√
n

pθ
(Xi) =

1√
n

n∑
i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oP (1)

This result is important in deriving the distribution of the MLE under local alternatives.

Le Cam’s Third Lemma: enables us to obtain the limiting distribution of a statistic under an alterative
law Qn based on laws Pn.

(a) General Version: letting Tn : Ωn → Rk be a sequence of test statistics, assuming Qn ◁ Pn and(
Tn, log

dQn
dPn

)
Pn⇝ (T, V )

Defining for all measurable A, R(A) := E[I(T ∈ A)V ]. Then:

Tn
Qn⇝ R

(b) User-friendly Version: (
Tn, log

dQn
dPn

)
Pn⇝ Nk+1

((
µ

−σ2

2

)
,

(
Σ τ
τT σ2

))
Then

Tn
Qn⇝ Nk(µ+ τ,Σ)

Distribution of MLE under local alternatives: asymptotic analysis of the MLE, multivariate CLT, and
QMD =⇒ local shows that for Ln = log dQn

dPn
with Qn ◁ Pn:(√

n(θ̂ − θ)
logLn

)
=

1√
n

n∑
i=1

(
I−1
θ ℓ̇θ0(Xi)

hT ℓ̇θ0(Xi)

)
+

(
0

− 1
2h

T Iθh

)
+ oP (1)

Pθ⇝ N

((
0

− 1
2h

T Iθh

)
,

(
I−1
θ τ
τ hT Iθh

))
where τ = I−1

θ E[(ℓ̇ℓ̇T )h] = h. By Le Cam’s third lemma, this implies that under the local alternative
model, Qn := Pθ+h/

√
n for h ∈ R:

√
n(θ̂ − θ)

Qn⇝ N(h, I−1
θ ) =⇒

√
n(θ̂ − (θ + h/

√
n))

Qn⇝ N(0, I−1
θ )

Demonstrating that the MLE is a regular estimator.

Distribution under local alternatives for ALEs: consider a general asymptotic linear estimator, µn,
with mean-zero influence function, ϕθ:

√
n[µn − µ(θ0)] =

1√
n

n∑
i=1

ϕθ(Xi) + oP (1)
Pn⇝ N(0, Pθϕ

2
θ)
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If µn is ALE and M := {Pθ : θ ∈ Θ} is QMD, for any h, including random hn → h:(√
n(µn − µ(θ))

log dQn

dPn
(Xn

1 )

)
Pn⇝ N

((
0

− 1
2h

T Iθh

)
,

(
Pθϕ

2
θ Pθϕθ(ℓ̇h)

Pθϕθ(ℓ̇h) hT Iθh

))
Implying by Le Cam’s third lemma

√
n(µn − µ(θ))

Qn⇝ N(Pθϕθ(ℓ̇h), Pθϕ
2
θ)

By a Taylor expansion,

µ(θ + h/
√
n)− µ(θ) = µ̇(θ)Th/

√
n+ oP (n

−1/2)

=⇒
√
n(µn − µ(θ + h/

√
n))

Qn⇝ N([Pθ(ϕθ ℓ̇θ)− µ̇(θ)]Th, Pθϕ
2
θ)

Thus, µn is regular iff

Pθ(ϕθ ℓ̇θ) = ⟨ϕθ, ℓ̇θ⟩ = µ̇(θ)

where µ̇(θ) is the pathwise derivative any ϕθ satisfying the above is the gradient of µ at θ in M.

Power under local alternatives for ALEs: suppose µn is a regular asymptotic linear estimator and M
is a collection of QMD distributions. By regularity, µ is a pathwise differentiable parameter at 0 with
influence function g0 that is also a gradient with σ(0) = P0g

2
0 . Under these conditions, an asymptotic

level-α test rejects H0 : θ = 0 satisfies for all h ∈ Rd:

πn

(
h√
n

)
n→∞
⇝ 1− Φ

(
z1−α − hT

µ̇(0)

σ(0)

)
Thus, the power of a test under local alternatives is determined by the slope: the pathwise derivative
µ̇(0) and the variance of the influence function σ(0) := P0g

2
0 . See Example 9.9.
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5 Empirical Process Theory

5.1 Concentration Inequalities

See Wainwright “High Dimensional Statistics; A Nonasymptotic Point of View” Ch 2 for more details.

Concentration inequalities give finite sample guarantees on tail bounds of form P (f(X1, . . . , Xn) ≥ t).
We can loosely group them into moment-based inequalities, MGF-based bounds, and Martingale-based
bounds.

5.1.1 Moment-based bounds

Markov Inequality: if X ≥ 0, t > 0

P (X ≥ t) ≤ E[X]

t

Chebyshev Inequality: for k in natural numbers

P (|X − E(X)| ≥ t) ≤ E(|X − E(X)|k)
tk

=⇒ P (|X − E(X)| ≥ t) ≤ Var(X)

t2

Chernoff bound: the tail bound depends on the growth rate of the MGF. If X has MGF MX .

P{X − E(X) ≥ t} ≤ inf
λ>0

MX−µ(λ)

eλt

logP{X − E(X) ≥ t} ≤ −sup
λ>0

{λt− logMX−µ(λ)}

Sub-Gaussian bound: based on the Chernoff bound for a Gaussian random variable. A random variable
X is sub-Gaussian with parameter σ if it has cumulant generating function that satisfies

logMX−µ(λ) ≤
λ2σ2

2

And also satisfies the following tail bounds, where tail probabilities are less than a normal random
variable

logP (X − µ ≥ t) ≤ − t2

2σ2

logP (|X − µ| ≥ t) ≤ log(2)− t2

2σ2

A few examples of sub-Gaussian random variables

(a) Any bounded random variable on [a, b] is sub-Gaussian with parameter σ = (b− a)/2.

(b) If two zero-mean independent random variables X1, X2 are sub-Gaussian with parameters σ1, σ2
then X1 +X2 is sub-Gaussian with parameter

√
σ2
1 + σ2

2 .

(c) Two (non-independent) RVs X1, X2 sub-G with parameters σ1, σ2, then X1 +X2 is sub-G with
parameter σ1 + σ2.

Hoeffding equality:

(a) General Case for sub-G random variables: suppose X1, . . . , Xn are independent with Xi mean µi
and sub-G parameter σi. Then the following bound on the sum holds

logP

(
n∑
i=1

(Xi − µi) ≥ t

)
≤ − t2

2
∑n
i=1 σ

2
i
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(b) Special Case for Bounded Random variables: If P has bounded support on [a, b], then X is
sub-Gaussian with parameter σ2 = (b− a)2/4. Therefore

logP (X − µ ≥ t) ≤ − 2t2

(b− a)2

The concentration of the mean is obtained as

logP (X̄m − µ ≥ t) ≤ − 2nt2

(b− a)2

Subexponential random variable: a random variable is sub-exponential with parameters (σ2, b) if for
all |λ| < 1

b :

logMx−µ(λ) ≤
λ2σ2

2

By Chernoff, a sub-exponential random variable also satisfies the following tail probability

logP (X ≥ µ+ t) ≤

{
− t2

2σ2 , if 0 ≤ t ≤ σ2/b

− t
2b , if t > σ2/b

Meaning that the concentration in Gaussian within a certain proximity to 0, but has thicker tails as t
increases.
Some examples of sub-exponential random variables

(a) All sub-Gaussian RVs are sub-Exponential.

(b) If X1, . . . , Xn are sub-Exponential random variables with parameters (σ2
1 , b1), . . . , (σ

2
n, bn), then

their mean-centered sum is sub-Exponential with parameters (
∑n
i=1 σ

2
i , max

1≤i≤n
bi).

(c) If X = Z2 for Z ∼ N(0, 1), then for |λ| < 1/4, the logMX−µ(λ) = 4λ2

2 implying X is sub-
Exponential with parameters (σ2, b) = (2, 4).

Bernstein’s Inequality:

(a) General form: if a random variable with mean µ and variance σ2 satisfies the Bernstein condition
with parameter b:

|E[(X − µ)k]| ≤ 1

2
k!σ2bk−2

Then the following tail bound holds:

P (|X − µ| ≥ t) ≤ 2 exp

(
− t2

2(σ2 + bt)

)
(b) Bounded random variables: Suppose X is bounded so that |X − µ| ≤ b and Var(X) = σ2.

Whenever, |λ| < 1
2b , then MX−µ(λ) ≤ exp(λ2σ2), meaning X is sub-E with parameters (2σ2, 2b).

This implies that

P{X − µ ≥ t} ≤ exp

(
− t2

2[σ2 + bt]

)
For X1, . . . , Xn independent bounded random variables |Xi − µi| ≤ b.

For sample means: Let X1, . . . , Xn be independent random variables such that |Xi − µi| ≤ b and
let σ̄n = 1

n

∑n
i=1 σ

2
i :

P{X̄n − E[X̄n] ≥ t} ≤ exp

(
− t2

2[σ̄2 + bt]

)
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5.1.2 Martingale-based Bounds

Useful for dealing with functions that are non-sums of random variables.

Given a martingale {(Dk, Fk)}∞k=1, define a martingale difference sequence as Dk = Yk − Yk−1 such
that such that E[|Dk|] <∞ and E[Dk+1|Fk] = 0. Any Martingale difference sequence has the following
telescoping decomposition Yn − Y0 =

∑n
k=1Dk.

Bounded differences property: ensures that a function does not depend too heavily on one input. A
function satisfies the bounded differences property if for all i there exists a finite ci such that the
following holds for all x1, . . . , xn, x

′

i ∈ X :

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

Bounded differences/McDiarmind’s Inequality: let f be an arbitrary function that satisifies the bounded
differences property with c1, . . . , cn. Then

P (|f(X)− E(f(X))| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
See Example 9.10 for an example with U statistics.

5.1.3 Lipschitz Functions of Gaussian variables

Lipschitz transform of Gaussian vector: suppose X1, . . . , Xn is a vector of standard normal random
variables and f : Rn → R is L-Lipschitz wrt the Euclidean norm: |f(x) − f(y)| ≤ L||x − y||2. Then
f(X)− E[f(X)] is sub-Gaussian with parameter at most L implying

P (|f(X)− E(f(X))| ≥ t) ≤ 2 exp

(
− t2

2L2

)
Thus, the concentration of any Lipschitz function of a standard Gaussian random vector, regardless of
the dimension, exhibits concentration like a scalar Gaussian random variable with variance L2.

See Example 9.11 for the concentration of the Gaussian maximum.

5.2 Empirical Process Theory

The main goal of empirical process theory is to study the behavior of Pnf , the empirical measure
indexed by F uniformly over the function class F . This differs from traditional LLNs and CLT
because the sequences of random variables (functions) are not fixed but vary within a class. This
means understanding under what conditions

(a) Uniform law of large numbers/consistency: ||Pn − P ||F := sup
f∈F

|Pnf − Pf | = oP (1)

(b) Uniform convergence to Gaussian process: {Gn(f) : f ∈ F} := {
√
n(Pn − P )f : f ∈ F}⇝ G

Why are we interested in these uniform convergence results? Many statistical estimands can be written
in the form of a functional of the distribution function Ψ(F ). Uniform consistency and uniform con-
vergence conditions can guarantee consistency and asymptotic normality of plug-in estimators Ψ(F̂n)
when the functional is continuous in the supnorm and hadamard differentiable respectively.

There is also great interest in understanding the concentration of ||Pn − P ||F about its mean, which
can help establish performance guarantees for many algorithms. A key result is that many problems
in nonparametric statistics involves estimating a finite-dimensional/infinite-dimensional parameter θ∗

through minimizing the empirical risk.

R̂n(θ, θ
∗) :=

1

n

n∑
i=1

ℓ(θ,Xi)
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In practice we minimize the risk over a subset of our parameter space Ω0 ⊂ Ω. We assess performance
via the regret, which describes the additional risk incurred by using the empirical risk minizer compared
to the true minimizer

Reg(θ̂) = Pℓ(θ̂)− inf
θ∈Ω0

Pℓ(θ)

The statistical question becomes how to bound the regret on the empirical risk minimizer? Turns out
when F is the class of loss functions:

Reg(θ̂) ≤ ||Pn − P ||F

(For example, see Example ?? for an example dealing with the regret of an empirical risk minimizer.

5.2.1 Uniform Consistency for function classes on [0, 1]

The following subsection is useful for classification problems with respect to the 0-1 loss.

Suppose F consists of [0, 1]-valued functions with boolean valued functions as a special case. Then
||Pn − P ||F satisfies the bounded differences property with ci =

1
n , implying:

P (||Pn − P ||F − E||Pn − P ||F ≥ t) ≤ 2 exp(−2nt2)

So with high probability (asymptotically), ||Pn − P ||F is close to its mean so it suffices to study the
mean.

Rademacher Complexity: Rademacher complexity characterizes the complexity of a function class by
characterizing the maximum correlation achievable between a function f ∈ F and a noise vector of
Rademacher RVs that takes {−1,+1} with probability 1/2

E||Rn||F := E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ϵif(Xi)

∣∣∣∣∣
]

Bounding ||Pn−P ||F via Rademacher Complexity: Suppose F is a collection of [0, 1]-valued functions.
Then with probability at least 1− 2 exp(−2nt2), it holds that

1

2
E||Rn||F −

√
log 2

2n
− t ≤ E||Pn − P ||F − t

≤ ||Pn − P ||F
≤ E||Pn − P ||F + t

≤ 2E||Rn||F + t

Thus, bounding the Rademacher complexity allows us to bound the empirical process term. How do
we go about bounding the Rademacher complexity? On approach is studying the VC dimension.

VC dimension: let F : X → {0, 1} be a class of binary functions. The projection of F onto xn1 :=
(x1, . . . , xn) is given by Fxn

1
:= {(f(x1), . . . , f(xn)) : f ∈ F}. We say F shatters xn1 if every possible

0-1 labelling of the n points can be accommodated by F , i.e., |Fxn
1
| = 2n. The growth function is the

maximal cardinality that the projection can take under n inputs:

ΠF (n) := sup
xn
1 ∈Xn

|Fxn
1
|

with the following properties. Letting A and B denote two families of sets, then the growth function
satisfies
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• ΠA(n+m) ≤ ΠA(n)ΠA(m)

• ΠA∪B(n) ≤ ΠA(n) + ΠB(m)

• ΠA∪B:A∈A,B∈B(n) ≤ ΠA(n)ΠB(m)

• ΠA∩B:A∈A,B∈B(n) ≤ ΠA(n)ΠB(m)

The VC dimension is the largest natural number n such that there exists some collection xn1 shattered
by F . The VC index is the smallest natural number n such that xn1 is NOT shattered by F (VC index
= VC dim + 1).

V Cdim(F) := sup {n ∈ N : ΠF (n) = 2n}
V Cind(F) := inf {n ∈ N : ΠF (n) < 2n}

Sauer’s Lemma describes that when n > V Cdim(F), the growth function attains polynomial order.
The Finite class lemma upper bounds the Rademacher complexity by the log of the growth function,
so polynomial growth leads to control of the Rademacher complexity and uniform norm. Let d ≥
V Cdim(F)

ΠF (n) ≤

{
2n n ≤ d(
e
d

)d · nd n > d

Implying by the corollary of the Finite Class Lemma

E||Pn − P ||F ≤ 2

√
2 log 2 + 2d log( edn)

n

= O

(√
log n

n

)

Upper bound VC dim by number of operations: consider a family of binary functions F which can
be computed using no more than t arithmetic or comparison operations (+,−,÷,×, >,≥, <,≤,=, ̸=).
Then

V C(F) ≤ 4p(t+ 2)

VC dimension of R-valued functions: if F consists of R-valued functions, it defines a class of sets by
the operation of subgraphs A := {{(x, t) ∈ X × R : t < f(x)} : f ∈ F}}. If F forms a vector space of
finite dimension (e.g., polynomials of degree at most n), the VC dimension of the function class is equal
to the dimension of the vector space.

5.2.2 Uniform Consistency for richer function classes

How can we ensure uniform consistency over richer classes of functions? Consider R-value functions
of interest like regression problems, ML, density estimation, etc? We have two approaches in general:
Dudley’s entropy integral and bracketing integrals.

Bracketing numbers: [ℓ, u] is an ϵ-bracket is ||u−ℓ||Lr(P ) ≤ ϵ. The bracketing number, N[](ϵ,F , Lr(P )),
is the minimal number of ϵ-brackets needed to cover F .
Glivenko-Cantelli Theorem: Finite bracketing numbers imply ||Pn − P ||F = oP (1).

Covering numbers: for a set T equipped with pseudometric d, T1 is an ϵ-cover if for each θ ∈ T ,
there exists θ1 ∈ T1 such that d(θ, θ1) ≤ ϵ. The ϵ covering number, N(ϵ, T, d) is the size of the minimal
ϵ-cover. The following relationship holds between covering and bracketing numbers:

N[](2ϵ,F , Lr(P )) ≤ N(ϵ,F , || · ||∞)
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Canonical Rademacher Process: a stochastic process is a collection of random variables. Let {Xθ : θ ∈
T} for an index set T ⊂ Rn and let ϵ be a vector of Rademacher RVs. Then

Xθ :=

n∑
i=1

θiϵi ≡ ⟨θ, ϵ⟩

is the Canonical Rademacher Process, that is mean-zero, and sub-Gaussian wrt the Euclidean metric.
A stochastic process is sub-Gaussian if for all θ, θ

′ ∈ T and (Xθ − Xθ′ ) is a sub-Gaussian random

variable with parameter σ2 = d(θ, θ
′
)2.

Dudley’s Entropy Integral: for any mean-zero sub-G process wrt pseudometric d with D the diameter
of index set T :

E
[
sup
θ∈T

Xθ

]
≤ E

[
sup

θ,θ′:d(θ,θ′)≤ϵ
(Xθ −X ′

θ)

]
+ 8

∫ D

ϵ/2

√
log(N(ϵ̃, T, d))dϵ̃

And if {Xθ : θ ∈ T} is a separable process (such as Rademacher process), then

E
[
sup
θ∈T

Xθ

]
≤ 8

∫ D

0

√
log(N(ϵ̃, T, d))dϵ̃

This bound is not vacuous when the integral is finite, i.e., logN(ϵ) = Cϵ−r for r < 2.

Applying to the Rademacher Complexity: we obtain if F is a real-valued function such that F = −F :

E||Rn||F ≤ 8√
n
EPn

[∫ ∞

0

√
logN(ϵ,F , L2(Pn))dϵ

]
≤ 8√

n
sup
Q

[∫ ∞

0

√
logN(ϵ,F , L2(Q))dϵ

]
Thus, if the entropy integral is finite E||Pn − P ||F = O(n−1/2), we control ||Pn − P ||F and establish a
uniform law of large numbers. Note: we can replace ∞ by D if F maps to [−D,D]. Also, the empirical
process

√
n(Pn − P )f = O(1) converges to a tight limit process uniformly in F .

VC classes: for example, the covering number for VC classes satisfies the entropy integral, allowing us
to obtain tighter bounds on empirical process term than those obtained via Sauer’s Lemma. For F a
VC class of functions that map to [−1, 1] with Vi(F) denoting the VC index, then

sup
Q

N(ϵ,F , L2(Q)) ≤ kVi(F)(16e)Vi(F) ·
(
1

ϵ

)2(Vi(F)−1)

Since the sup
Q

logN(ϵ) = Cϵ−1, the entropy integral is finite implying

E||Pn − P ||F ≲ E||Rn||F ≲ O(n−1/2)

See Examples 9.12 and 9.13 for applications to functions that are Lipschitz in Indexing Parameters.

Bracketing Integral Bound: suppose F is a class of functions that maps to [−1, 1]. Then it holds that

E||Pn − P ||F ≤ C√
n

∫ 1

0

√
logN[](ϵ,F , L2(P )dϵ

In the case of envelope function F

E||Pn − P ||F ≤ c√
n
||F ||L2(P )

∫ 1

0

√
logN[](ϵ||F ||L2(P ),F , L2(P ))dϵ

Thus, if the bracketing integral is finite E||Pn − P ||F = O(n−1/2) and then the empirical process√
n(Pn − P )f = O(1) converges to a tight limit process uniformly in F . See Example 9.14 for an

example using Sobolev classes.
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5.3 Uniform Convergence of Empirical Process

Suppose we are interested in inference about the random function t→ Fn(t) and hope to get inference
uniform over its domain. We may also be interested in whether plug-in estimators Ψ(Fn), continu-
ous functionals of the empirical distribution are consistent and asymptotically normal estimators for
population parameters Ψ(F0).

Glivenko-Cantelli Theorem (CDF): Suppose X1, . . . , Xn
iid∼ F0, then ||Fn − F0||∞ = sup

t
|Fn(t) −

F0(t)|
a.s.→ 0. Two corollaries of this theorem

(a) Concentration of supnorm

P

[
||Fn − F ||∞ ≥ c√

n
+ δ

]
≤ exp(−nδ2/28)

(b) Plug-in Functionals: Any plug-in estimator Ψ(F̂n) for a functional Ψ(F0) is almost surely consis-
tent provides Ψ is continuous wrt the supnorm metric.

Donsker Theorem (CDF): Suppose X1, . . .
iid∼ F , the sequence of empirical processes

√
n(Fn−F0)⇝ G,

a mean zero Gaussian process with covariance function F0(min(ti, tj)) − F0(ti)F0(tj). See Example
9.21 for confidence bands on the CDF.

ℓ∞(F): in order to study convergence of a stochastic process (the empirical process) in a metric space,
we need a metric space in which to describe the convergence.

ℓ∞(F) := {H : F → R such that ||H(f)||F <∞}

A set of maps equipped with the sup norm || · ||F .
Glivenko-Cantelli Class: a class of functions F is P0-G-C if

||Pnf − P0f ||F = sup
f∈F

|Pnf − P0f |
a.s.→ 0

Donsker Class: a class of functions F is P0-Donsker if Gn ⇝ G in ℓ∞(F) ⇐⇒ ||Gn||F → ||G||F where
G is a mean-0 Gaussian process with covariance function:

(f1, f2) → P0(f1f2)− P0(f1)P0(f2)

Donsker permanance properties: if F and G are P-Donsker classes, then the following are also P-
Donsker

(a) F + G = {f + g : f ∈ F , g ∈ G}
(b) −F = {−f : f ∈ F}
(c) F ∪ G
(d) Suppose that only F is P-Donsker, then if G ⊂ F , G is P-Donsker.

(e) If F is Donsker, F̄ (i.e., the closure, the set of all elements of F and its L2(P ) limit points) is
also Donsker.

Sufficient conditions to prove a Donsker Class:

(a) Satisfy finite bracketing integral: for δ > 0, F is P0-Donsker if:

J[](δ = 1,F , L2(P )) :=

∫ δ

0

√
logN[](ϵ,F , L2(P )dϵ <∞

(b) Satisfy uniform entropy integral: F is P0-Donsker if it has an envelope function F̄ satisfying
PF̄ 2 <∞ and

J(δ = 1,F , L2(P )) =

∫ ∞

0

√
log sup

Q
N(ϵ||F̄ ||Q,2,F , L2(Q)) <∞

Where ||F̄ ||Q,2 = QF̄ 2
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6 Estimation Paradigms

6.1 M and Z estimation

6.1.1 M estimation

M-estimation: a collection of functions {mθ} indexed by parameter/functional θ identifies θ0 if the
following holds uniquely;

θ0 = argmax
θ

P0[mθ(X)]

M-estimator replaces the expectation over P0 with the empirical expectation

θn = argmax
θ

Pn[mθ(X)]

Consistency of M-estimators (vdv 5.21): since M-estimator θn is a near maximizer of the random

criterion function Mn := Pnmθ(X). In order for θn
p→ θ0.

(a) Near solution is available:

Mn(θn) ≥ sup
θ
Mn(θ)− oP (1)

(b) Identification: for all ϵ > 0:

M0(θ0) > M0(θ) ∀ θ : ||θ − θ0|| > ϵ

(c) Uniform consistency of criterion/estimating function: since criterion/estimating function is ran-
dom, we require that it uniformly converge to true criterion/estimating function.

sup
θ
|Mn(θ)−M0(θ)|

p→ 0

More generally, we require {mθ : θ ∈ Θ} lies in a Glivenko-Cantelli Class: meaning sup
θ
|(Pn −

P0)mθ| = oP (1). A sufficient condition for this is the function maximized is continuous in x, Θ
has compact support, and is dominated by integrable function.

Asymptotic Linearity and Normality of M-estimators (vdv 5.23): suppose the M-estimators is a near-
maximizer of Mn := Pnmθ(X). Under the following conditions

(a) Suppose θ̂n
p→ θ (condition (a-c) above).

(b) Interior and differentiability: suppose θ, θ0 are on the interior (not on boundary) of the parameter
space, and that mθ is differentiable at θ0 with derivative ṁθ0(x).

(c) mθ is sufficiently smooth: uniform convergence under local alternatives: there exists a a nonsin-
gular symmetric matrix Vθ0

lim
ϵ→0

sup
||h||=1

|P0mθ0+ϵh − P0mθ0 − 1
2ϵ

2hTVθ0h|
ϵ2

ϵ→0−→ 0

Note this assumption is equivalent to assuming that
{
mθ−mθ0

−(θ−θ0)T ṁθ0

||θ−θ0|| : ||θ − θ0 < ϵ||
}

forms

a Donsker class. We can replace this hard-to-verify assumption with two conditions.

i. Condition 1: assuming that P0mϕ admits a second order Taylor expansion at θ0

P0mθ = P0mθ0 +
1

2
(θ − θ0)

TVθ0(θ − θ0) + o(||θ − θ0||2)

Where Vθ0 is the matrix of second derivatives of mθ at θ0.
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ii. Condition 2: Lipschitz ∀ x ∈ X and every θ1, θ2 ∈ U(ϕ0) (neighborhood of ϕ0):

||mθ1(x)−mθ2(x)|| ≤ ṁ(x)||θ1 − θ2||

Under these conditions, recalling Vθ0 is the matrix of second derivatives of mθ at θ0:

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ṁθ0(Xi) + oP (1)

√
n(θ̂n − θ0)⇝ N

(
0, V −1

θ0
P (ṁθ0ṁ

T
θ0)V

−1
θ0

)
Convergence rate of M-estimator (vdv 5.52) Suppose the following conditions hold for constants C > 0
for sufficiently small δ > 0

sup
δ/2<d(θ,θ0)<δ

P (mθ −mθ0) ≤ −Cδα

E sup
d(θ,θ0)|<δ

|
√
n(Pn − P )(mθ −mθ0)| ≤ Cδβ

If Pnmθ̂n
≥ Pnmθ0 −Op(nα/(2β−2α)), then n1/(2α−2β)d(θ̂n−θ0) = Op(1), implying the optimal balance

rate for weak convergence is n1/(2α−2β).
Typically, α = 2 when Pmθ is twice differentiable at θ0 affording a 2nd order Taylor expansion when
the second derivatives exist. The second condition (the maximal inequality) is harder to verify but can
be determined based on the entropy of the function classes (see Lemmas 19.34-19.38).

6.1.2 Z estimation

Z-estimation: for a collection of estimating functions zθ indexed by parameter or functional θ, the
population estimating equation identifies θ0 if the following holds

θ0 is solution in θ to P0[zθ(X)] = (0, . . . , 0)

The Z-estimator is the solution in ψ to the sample estimating equation which replaces the expectation
over P0 with the empirical expectation:

θ̂n is solution in θ to Pn[zθ(X)] = (0, . . . , 0)

Consistency of Z-estimators in 1-D case (vdv 5.10)

(a) Let Θ ⊂ R and Zn := Pnzθ be a random function and Z0 := P0zθ such that

Zn(θ)
p→ Z0(θ) ∀θ

(b) Let Zn(θ) is continuous in θ with exactly one zero θ̂n and let θ0 be a point where

Z0(θ0 − ϵ) < 0 < Z0(θ0 + ϵ)

Then θ̂n
p→ θ0.

Consistency of Z-estimators (vdv 5.9)

(a) Near solution is available: θn is near solution to estimating equation.

Pnzθn = Zn(θn) = oP (1)

(b) Identification: well separated minimizer. For all ϵ > 0:

0 = −||Z0(θ0)|| > −||Z0(θ)|| ∀ θ : ||θ − θ0|| > ϵ
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(c) Uniform consistency of estimating equation across all θ ∈ Θ

sup
θ∈Θ

||Zn(ϕ)− Z0(ϕ)||
p→ 0

Equivalent to requiring class of estimating functions {zθ,j : θ ∈ Θ, j = 1, . . . , k} lies in a Glivenko-
Cantelli Class. A sufficient condition for this is the estimating function is continuous in x, Θ has
compact support, and is dominated by integrable function.

Asymptotic Linearity and Normality of Z estimators: suppose θ̂n and θ0 are the (near) solutions in θ
to Pnzθ = 0 and P0zθ = 0.

(a) θ̂n
p→ θ0 (conditions (a-c) above.

(b) Conditions on estimating function: suppose the estimating function is squared integrable, P ||zθ||2 <
∞, and Pzθ is differentiable at θ0 with first derivative matrix Vθ0 .

(c) Suppose the class of estimating functions {zθ : θ ∈ Θ} is a Donsker class. A sufficient condition
is that the estimating functions be lipschitz in their indexing parameters

||zθ1 − zθ2 || ≤ ż(x)||θ1 − θ2||

Then under these conditions

√
n(θn − θ0) = −V −1

θ0

1√
n

n∑
i=1

zθ0(Xi) + oP (1)⇝ N(0, V −1
θ0
P0[zθ0z

T
θ0 ](V

−1
θ0

)T )

6.2 Kernel Density Estimation

Kernel density estimators are useful for functionals that depend on local features (density, regression
function), like estimating the average density or the value of a density at a point.

A kernel is a function satisfying
∫
K(u)du = 1. An s-order kernel satsifies

∫
urK(u)du = 0 for all

r ∈ {1, . . . , s− 1} and |
∫
usK(u)du| <∞.

A Kernel density estimator takes the form

f̂n,h : x→ 1

nh

n∑
i=1

K

(
Xi − x

h

)
Common choices of K include a Uniform Kernel K(U) = 1

2 I(|u| ≤ 1) or a Gaussian Kernel K(U) =
1√
2π

exp(−u2/2).

Kernel density estimators are often judged by their mean-integrated squared error (MISE)

MISE(f̂) =

∫
Ef [(f̂(x)− f(x)2]dx

Second order kernel: suppose the density f is twice continuously differentiable, and that K is second-
order (

∫
uK(u)du = 0,

∫
u2K(u)du <∞). There exists a constant C such that

MISE(f̂) :=

∫
Ef [(f̂(x)− f(x)2]dx ≤ C

(
1

nh
+ h4

)
consequently for hn = O(n−1/5), MISE(f̂) = O(n−4/5) which is slower than parametric rate (O(n−1)).

Higher order kernels: suppose the density f is m-times differentiable with
∫
|f (m)(x)|2dx < ∞. Then

there exists a constant C such that

MISE(f̂) :=

∫
Ef [(f̂(x)− f(x)2]dx ≤ C

(
1

nh
+ h2m

)
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consequently for hn = O(n−1/(2m+1)), we have MISE(f̂) = O(n−2m/(2m+1)) which approaches a para-
metric rate.

Undersmoothing: if we’re interested in a statistical functional Ψ that depends on a local feature of a
parameter (such as an average density) we require smoothing and it is reasonable to base estimation on
the KDE Ψ(P̂n). However, using the above results optimizes the bias-variance tradeoff for the density
itself (a nuisance) and the estimate of Ψ(P̂n) will inherit bias. One can show the order of the bias in
hn and n (order of variance remains unchanged), and setting the rates equal ensures optimal rate on
MISE.

6.3 Asymptotic Linearity

An estimator ψn of ψ0 is asymptotically linear with influence function ϕP0
if it can be written as:

ψn − ψ0 =
1

n

n∑
i=1

ϕP0(Xi) + oP (1/
√
n) (1)

Where ϕP0
satisfies:

(a) P0-Mean 0: P0ϕP0
= 0

(b) P0-squared integrable: P0ϕ
2
P0
<∞

Asymptotically linear estimators are both consistent and ASN with limiting distributionN(0,Var[ϕP0 ]).
Below are some examples of asymptotically linear estimators:

(a) Sample mean: ψ = 1
n

∑n
i=1Xi is linear estimator for ψ0 := EP0

[X] with ϕP0
(x) = x− ψ0:

ψn − ψ0 =
1

n

n∑
i=1

Xi − ψ0

(b) Sample variance: ψn = σ2
n = 1

n

∑n
i=1[Xi − X̄n]

2 is ALE for σ2
0 with influence function ϕP0(x) =

[x− µ0]
2 − σ2

0 .

σ2
n − σ2

0 =
1

n

n∑
i=1

(
[Xi − µ0]

2 − σ2
0

)
+ oP (n

−1/2)

(c) Sample median: ψn is an ALE estimator for the ψ0 population median with influence function

ϕP0(x) =
I(x>ψ0)− 1

2

f0(ψ0)
:

ψn − ψ0 =
1

n

n∑
i=1

I (Xi > ψ0)− 1
2

f0(ψ0)
+ op(n

−1/2)

(d) p-th sample quantile: let Q0(p) be the p-th quantile. Let P0 have distribution function F0 and
density f0. Let Qn(p) denote the p-th sample quantile. Then:

Qn(p)−Q0(p) =
1

n

n∑
i=1

[
F0(Q0(p))− 1(Xi ≤ Q0(p))

f0(Q0(p))

]
+ oP (n

−1/2)

(e) Z-estimators (no nuisance): if ψ0 is the unique solution to P0U(ψ) = 0 and ψn is the (near)
solution to the estimating equation PnU(ψ) = 0, then ψn sastifies

ψn − ψ0 =
1

n

n∑
i=1

(
− ∂

∂ψ
P0U(ψ)

∣∣∣
ψ=ψ0

)−1

U(ψ0)(Xi) + oP (n
−1/2)

To confirm asymptotic linearity, we require that the influence function ϕP0(x) =

(
− ∂
∂ψP0U(ψ)

∣∣∣
ψ=ψ0

)−1

U(ψ0)(x)

be finite squared integrable.
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(f) Z-estimator (with nuisance): suppose that the estimating function now depends on a nuisance
parameter η: U(ψ, η). Suppose that ψ0 is the solution in ψ to the equation P0U(ψ, η0) = 0.
Suppose ηn is an ALE for η0 with IF φP0

. Define ψn to be a solution or near solution in ψ to:

1

n

n∑
i=1

U(ψ, ηn) = 0

Assuming ψn is consistent for ψ0, ψn is ALE for ψ0 with influence function:

ϕP0(x) := −
(
∂

∂ψ
P0U(ψ, η0)

∣∣∣
ψ=ψ0

)−1 [
U(ψ0, ψn)(x) +

(
∂

∂η
P0U(ψ0, η)

∣∣∣
η=η0

φP0(x)

)]

6.4 V/U statistics

Many parameters of interest can be written in the following form:

V (P ) =

∫ ∫
· · ·
∫
H(x1, . . . , xm)dP (x1) . . . dP (xm

with H a function known as a kernel.
V-statistics: Natural estimators of these quantities are plug-in estimators V (Pn) called V-statistics:

Vn := V (Pn) =
1

nm

n∑
i1=1

. . .

n∑
im=1

H(Xi1 , . . . , Xim)

Some examples include:

(a) General moment: V (P ) =
∫
g(x)dP (x) with V-statistic

Vn =
1

n

n∑
i=1

g(Xi)

(b) Variance: V (P ) =
∫ ∫

1
2 (x1 − x2)

2dP (x1)dP (x2) with V-statistic

Vn =
1

2n2

n∑
i=1

n∑
j=1

(Xi −Xj)
2

(c) Kendall’s Tau: V (P ) = 4P (X1 < X2, Y1 < Y2)− 1 or

V (P ) =

∫ ∫
[2I(x1 < x2, y1 < y2) + 2I(x2 < x1, y2 < y1)− 1]P (dx1, dy1)P (dx2, dy2)

with V-statistic

Vn = 2×
(
1− 1

n

)
× fraction of pairs with positive slopes− 1

(d) Cramer-von Mises GOF criterion: V (P ) =
∫
[FP (x)− F ∗

P (x)]
2F ∗(dx) for given F ∗:

V (P ) =

∫ ∫ [∫
{I(x1 ≤ u)− F ∗(u)}{I(x2 ≤ u)− F ∗(u)}F ∗(du)

]
dP (x1)dP (x2)

with V statistic

Vn =

∫
[Fn(x)− F ∗(x)]2F ∗(dx)
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Linearization (V-statistic): the key tool we use to determine the asymptotic distribution of V-statistics.
Suppose Vn, V0 have m inputs and is symmetric in its arguments (we can symmetrize if we compute
average under permutations):

Vn − V0 = (Pmn − Pm0 ) =

m∑
k=1

(
m

k

)
(Pn − P0)

kHk

Where Hk := (Pn − P0)
m−kH is where we’ve integrated all terms excluding the first k in the kernel.

If we let τ2k = Var(Hk(X1, . . . , Xk)) denote the variance of the k-th variate, and let a be the minimum
index such that τ2a > 0, then the dominant term in the above expansion is(

m

a

)
(Pn − P0)

aHa

When a = 1, we can write the expansion above as

Vn − V0 = (Pmn − Pm0 ) = m(Pn − P )H1 +

m∑
k=2

(
m

k

)
(Pn − P0)

kHk

And the asymptotic behavior is determined by the first order term. The V-statistic is non-degenerate,
and provided the kernel H ∈ H a Donsker class, then Vn is asymptotically linear with influence function
m(H1(Xi)− V0):

Vn − V0 =
1

n

n∑
i=1

m(H1(Xi)− V0) + oP (n
−1/2)

U-statistics: V-statistics have finite sample bias because they use matching pairs of indices. A U-
statistic averages out H over unique indices

Un :=

(
n

m

)−1 ∑
im∈Dm,n

H(Xi1 , . . . , Xim)

where Dm,n := {im ⊂ {1, . . . , n} := (i1, . . . , i2, . . . , im) : 1 ≤ i1 < . . . < im ≤ n} denotes the set of
unique indices.

Linearization (U-statistic): consider the case where number of arguments m = 2. Define the following
quantities:

Vn :=
1

n2

∑
i,j

H(Xi, Xj)

Un :=
1

n(n− 1)

∑
i ̸=j

H(Xi, Xj)

Dn :=
1

n

n∑
i=1

H(Xi, Xi)

Then

Vn =

(
1− 1

n

)
Un +

1

n
Dn

=⇒ Un − Vn =
1

n
(Un −Dn)

=⇒ n1/2(Un − Vn) = n−1/2(Un −Dn) = OP (n
−1/2) (WLLN)

Hence, Un = Vn +OP (n
−1), implying:

Un − V0 = (Vn − V0) + (Un − Vn)

= m(Pn − P0)H1 + oP (n
−1/2)

Thus, Un is ALE for V0 with IF: ϕ : x→ m[H1(x)− V0].
The same result holds for general m. V and U statistics are hence asymptotically equivalent.
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6.5 Functional Delta Method

The delta method allows us to study distribution of a fixed, differentiable function f of an estimator
θn of θ0. What if we want to study a fixed functional Ψ of an estimator Fn of the true distribution
function F0?

The functional delta method is a general method for determining the asymptotic distribution of plug-
in estimators of the form Ψ(Pn) where Ψ is appropriately differentiable (hadamard differentiable). If
the functional is hadamard differentiable and the derivative ψ̇P0

is finite-squared integrable, then the
functional delta method ensures the plug-in estimator is asymptotic linear.

Heuristically, if the functional is “differentiable” in an appropriate sense, and we consider a perturbation
from P in the direction of H =

√
n(Pn − P ) of length t = 1√

n
, we obtain the von Mises Expansion.

ψ(P + tH)− ψ(P ) = tδ′P (H) + . . .+
1

m!
tmψ(m)

p (H) + o(tm)

ψ(Pn)− ψ(P ) =
1√
n
ψ′
P (Gn) + . . .+

1

m!

1

nm/2
ψ
(m)
P (Gn)

Where the asymptotic distribution is determined by the first order term. If the function ψ′
P is linear,

then

ψ(Pn)− ψ(P ) ≈ 1

n

n∑
i=1

ψ′
P (δXi − P )

where δXi
are the dirac delta measures on the observations. This function ψP (δx−P ) is known as the

influence function of the function ψ.

In order for a delta-method to be appropriate for functionals, we require appropriately defined notions
of continuity and differentiability for functionals.

(a) ρ-continuity: a functional is ρ-continuous at F̃ ∈ P if for all deterministic sequences {F̃k}∞k=1 ⊂ P
s.t.

ρ(F̃k − F̃ ) −→ 0 =⇒ ψ(F̃k)
p→ ψ(F0)

(b) Hadamard differentiability: we first define the Gâteaux derivative of Ψ at F ∈ P in the direction
of h ∈ Q(F ) := {c(F1 − F ) : c ∈ R, F1 ∈ P} is given by:

Ψ̇(F ;h) = lim
ϵ→0

[
Ψ(F + ϵh)−Ψ(F )

ϵ

]
=

d

dϵ
Ψ(F + ϵh)

∣∣∣
ϵ=0

However, Gâteaux differentiability only implies that a Taylor expansion holds in a fixed direction
h. We want the expansion to hold uniformly for all directions. Let ϵn := n−1/2 and hn :=√
n(Fn − F0). A functional Ψ is Hadamard differentiable with respect to the supnorm || · ||∞ if

there exists a continuous linear map ψ̇ between normed spaces such that

sup
h∈H

∣∣∣∣(Ψ(F0 + ϵnhn)−Ψ(F0)

ϵn
− ψ̇(F0;hn)

)∣∣∣∣ ϵn→0−→ 0

Hadamard differentiability implies the validity of the following expansion, which comprises the
functional delta method when ϵn = 1/

√
n and hn =

√
n(Fn − F0).

Ψ(Fn)−Ψ(F0) = ϵn ψ̇(F0;hn) + ϵn

(
Ψ(F0 + ϵnhn)−Ψ(F0)

ϵn
− ψ̇(F0;hn)

)
= ψ̇(F0;Fn − F0) + oP (n

−1/2)
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Functional Delta Method: if Ψ is a Hadamard differentiable functional relative to the supnorm metric,
letting ϵn = n−1/2 and hn :=

√
n(Fn − F0), it holds that RF0,ϵn(hn) = oP (1) yielding

Ψ(Fn)−Ψ(F0) = ψ̇(F0;Fn − F0) + oP (n
−1/2)

=
1

n

n∑
i=1

ψ̇(F0; δ(Xi)− F0) + oP (n
−1/2)

By linearity of ψ̇, the term in the sum is mean 0. If the term is also finite squared integrable, then
Ψ(Fn) is an ALE for Ψ(F0) with influence function ϕP0

(x) = ψ̇(F0; δ(x)− F0).

Functional Chain rule: suppose there are two functionals Ψ and Φ which are Hadamard differentiable
at F0 and Ψ(F0) respectively. Then the composed map Φ ◦ Ψ is also hadamard differentiable at F0

with derivative (influence function) given by

ϕ′Ψ(F0)
◦ ψ′(F0) = ϕ′(Ψ(F0);ψ

′(F0;hn))
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7 Efficiency Theory

7.1 Parametric Efficiency

Score function: the score function is the gradient of the log-likelihood, gn(θ) =
∑n
i=1

∂
∂θ ℓ(θ|Xi).

Maximum Likelihood Estimator: is both an M and Z estimator. Maximizes the (log)-likelihood, mini-
mizer of the KL divergence, also can be the solution in θ to the score equation gn(θ) = 0.

Quadratic Mean Differentiability: ensures the likelihood is sufficiently smooth, affording us a Taylor
expansion of the likelihood ratio process. A root density

√
pθ is called QMD (or differentiable in

quadratic mean) at θ if there exists a function ℓ̇θ s.t.:

sup
h∈Rd:||h||=1

∫ [√
pθ+ϵh(x)−

√
pθ(x)

ϵ
− 1

2
hT ℓ̇θ(x)

√
pθ(x)

]2
dµ(x)

ϵ→0−→ 0

When a model is QMD, it has mean zero score and FIM exists.

Properties of MLE: Fisher-Cramer Theorem states under a QMD model

(a) Consistent: θ̂
p→ θ0

(b) Asymptotically normal and efficient:

√
n(θ̂ − θ)⇝ N(0, I−1

X (θ0))

(c) Invariance Property: if θ̂ is the MLE for θ0, then f(θ̂) is the MLE for f(θ0) and has limiting
distribution

√
n(f(θ̂)− f(θ0))⇝ N(0,∇f(θ0)T I−1(θ0)∇f(θ0))

Fisher information: describes the curvature of the log-likelihood surface

In(θ) = −E[∇θ∇θℓn(θ|X1)] = nI1(θ) = n · −E[∇θ∇θp(X1; θ)]

Regular Estimator: an estimator Tn is regular for a parameter ψ(θ) if for every h

√
n(Tn − ψ(θ + h/

√
n))

θ+h/
√
n
// Lθ

where Lθ is a probability measure that does not depend on h.

Why are we interested in regular estimators?

(a) Hodge’s Estimator mimics the sample mean when the value of the X̄n > n−1/4 elects 0 when
|X̄n| < n−1/4. It’s “improvement” over the sample mean is deceptive, and illustrates the impor-
tance of evaluating estimator performance in neighborhoods that shrink with n.

(b) When we restrict attention to regular estimators ψ(θ), they have best possible limiting distribution
N(0, ψ̇θI

−1
θ ψ̇θ). The AE convolution theorem says that this limiting distribution can only be

improved over a Lebesgue null set of parameters.

(c) Regular estimators are locally asymptotic minimax, meaning the risk over N(0, ψ̇θI
−1
θ ψ̇θ) lower

bounds the asymptotic minimax risk of any estimator in a neighborhood about θ0.

35



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

Cramer-Rao Bound: provides the lower bound on the variance of a regular estimator.

Var(T (X)) ≥

(
∂
∂θ̂
Eθ[T (X)]

)2
IX(θ)

Nuisances: Suppose θ = (θ1, . . . , θk) and our sole interest is estimating τ(θ1), while (θ2, . . . , θk) are
nuisances.

∇θ(τ) =

(
dτ

dθ1
, 0, . . . , 0

)
Varθ[T (X)] ≥

(
dτ

dθ1
, 0, . . . , 0

)(
IX,11 IX,12
IX,12 IX,22

)−1(
dτ

dθ1
, 0, . . . , 0

)T

=

(
dτ
dθ1

)2
I11·2(θ)

Where I11·2(θ) = I11(θ)− IX,12(θ)[IX,22(θ)]
−1IX,21(θ).

7.2 General Efficiency Theory

Suppose X1, . . . , Xn
iid∼ P0 ∈ M with functional ψ : M → R. If our goal is to estimate ψ0 := ψ(P0)

from the observed data, efficiency theory asks what is the best variance we can achieve in a model M
indexed by a possible infinite-dimensional parameter.

The guiding idea of efficiency theory is that estimation of ψ0 in theM should be at least as hard as in
any parametric submodel M1 ⊂M containing P0. Let H(P0) index all smooth (QMD) one-dimensional
parametric submodels of M centered at P0. In other words, for each h ∈ H(P0) there exists a δ > 0
s.t.

(a) P0 origin: Pθ,h = P0 when θ = 0

(b) Submodel is in broader model M : Pθ,h ∈M for all θ ∈ [0, δ)

(c) QMD at origin: Mh = {Pθ,h : θ ∈ [0, δ)} is QMD at θ = 0.

Our objective is to find the lower bound on the variance of a regular estimator’s asymptotic distribution
in our model M , where a regular estimator is regular wrt all parametric submodels.

Generalized Cramer Rao Lower Bound: The variance of any regular estimator in the infinite dimen-
sional model, v∗0(M), can be lower bounded by the variance in any parametric submodel. To achieve
the tightest lower bound, we appeal to the least favorable parametric submodel :

v∗0(M) ≥ sup
h∈H(P0)

v0(Mh)

= sup
h∈H(P0)

(
∂
∂θψ(Pθ,h)

∣∣∣
θ=0

)2
IMh

(0)

Where

IMh
(0) := Pθ,h

(
∂

∂θ
log pθ,h

)2 ∣∣∣
θ=0

≡ P0g
2
h

Where gh is the score function. Thus, the Fisher information in the least favorable submodel depends
on h completely through the score.
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Pathwise differentiability & Gradient: when the functional ψ is pathwise differentiable, there exists a
P0-mean-zero square integrable function D(P0) : X → R, the gradient, such that for all h ∈ H(P0) (all
QMD submodels)

∂

∂θ
ψ(Pθ,h)

∣∣∣
θ=0

= P0[D(P0)gh]

Riez Representation Theorem: guarantees the existence of a gradient for pathwise differentiable pa-
rameters.

Tangent set/Space: the tangent set of a statistical model M at P0, denoted G(P0) is the collection
of scores of all QMD submodels of M centered at θ = 0. The tangent space denoted TM (P0) is the
L2(P )-closure of the linear span of the tangent set.

(a) In parametric models: the tangent space is just the linear span of the score vector for the parameter
β ∈ Rq.

TM = {uT s0(x) : u ∈ Rq}

Where s0(x) =
∂
∂θ log pθ(x)

∣∣
θ=0

for the parametric model p.

(b) In semiparametric models: the more restrictive the semiparametric model, the smaller the tangent
space. Will be proper subspace of L2

0(P ).

(c) In nonparametric models: the tangent space is L2
0(P )

Canonical Gradient: let D∗(P0) := ΠTM
(P0) (D(P0)) denote the projection of the gradient onto the

tangent space of the model TM . This implies that D ∗ (P0) ∈ TM and D(P0) −D∗(P0) ∈ T⊥
M by the

orthogonality of Hilbert space projections.

Then, the Generalized Cramer-Rao lower bound writes as

v∗0(M) ≥ sup
g∈TM (P0)

[⟨D(P0), g⟩]2

P0g2

= sup
g∈TM (P0)

[
����������: 0

⟨D(P0)−D∗(P0), g⟩+ ⟨D∗(P0), g⟩]2

P0g2
(D(P0)−D∗(P0) ⊥ TM (P0))

= P0(D
∗(P0)

2)

We have that D∗(P0) is the unique gradient in TM (P0), the canonical gradient.

Gradients in nested models: let M1 ⊆ M2 be two models. Suppose P ∈ M1 and ψ : M2 → R is
pathwise differentiable at P relative to M2. Then ψ is pathwise differentiable at P relative to M1a nd

GradM2
(P ) ⊆ GradM1

(P )

This means we can pick bigger models, find gradients in bigger models, and apply them to smaller
models.

Efficient Influence Functions: there exists a connection between influence functions of RAL estimators
and gradients of pathwise differentiable parameters.

(a) If ψn is RALE for ψ(P0) with IF ϕP0
=⇒ ψ is pathwise differentiable at P0 with gradient ϕP0

(b) If ψ is pathwise differentiable with gradient D(P0) =⇒ there exists an ALE with influence
function D(P0)

Therefore, if D∗(P0) is the canonical gradient of ψ at P0 in M , this ensures the existence of an ALE
with influence function equal D∗(P0) to the efficient influence function. Thus, the variance lower bound
given in the GCRLB is achievable using an ALE, and this estimator is termed efficient.

A regular asymptotic linear estimator is efficient iff

ψn − ψ0 =
1

n

n∑
i=1

D∗(P0)(Xi) + oP (n
−1/2)
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7.3 Constructing Efficient Estimators

When parameters depend on “local” information, such as densities or regression functions, plug-in
estimators may not be well-defined. We must rely on smoothing, which can introduce first order bias
to simplistic plug-in estimators. We require more sophisticated approaches to obatin asymptotic linear
estimators.

Undersmoothing: if our parameter of interest depends on a density, there does not exist a plug-in
estimator for the density because the density is “too local” of a parameter. Instead, we can use a plug-
in estimator where a KDE is used to estimate the density. By examining the bias of our estimator,
supplying a bandwidth h = O(n−1/5), while optimal for estimating the density, leads to first order bias
in estimation of the average density for example. Thus, we inspect the bias tune the bandwidth of the
KDE to ensure bias decays at rate O(n−1/2). Not a general approach.

Estimating Equations Approach: we saw if ψn is consistent for ψ0 where ψn is a near solution in ψ to

PnU(ψ, ηn) = 0

Then ψn is asymptotically linear with the form

ψn − ψ0 = −a−1
0

 1

n

n∑
i=1

U(ψ0, η0)(Xi) + b0 (ηn − η0)︸ ︷︷ ︸
or IF ηn

+ oP (n
−1/2)

Where a−1
0 :=

(
∂
∂ψP0U(ψ, ηn)

∣∣∣
ψ=ψ0

)−1

and b0 := ∂
∂ηP0U(ψ0, η)

∣∣∣
η=η0

. Motivating the possibility of

using the efficient influence function of ψn as an estimating function to obtain an efficient estimator
when a0 = −1, b0 = 0!

If we assume that (a) ψ and η are variationally independent and (b) the estimating function is con-
tinuous in L2(P0), and (c) ηn tends to η0 at oP (n

−1/4) rates then Neyman-Orthogonality holds
(b0 = 0). Under other conditions, a0 = −1. And using the EIF as the estimating function U will yield
an efficient solution.

7.4 One-step estimation

Based on a first-order (linear) expansion of the functional with R(P, P0) := ψ(P ) − ψ(P0) + P0D(P )
often second order in the nuisances:

ψ(P )− ψ(P0) = −P0D(Pn) +R(Pn, P0)

= (Pn − P0)D(Pn)− PnD(Pn) +R(Pn, P0)

= (Pn − P0)D(P0)− PnD(Pn) + (Pn − P0) [D(Pn)−D(P0)] +R(Pn, P0)

Where D is the EIF and

(a) Term 1: is a linear term

(b) Term 2: is the source of excess bias of ψ(Pn)

(c) Term 3: is an empirical process term that is negligible under certain conditions

i. P0[D(Pn)−D(P0)]
2 = oP (1)

ii. There exists a P0-Donsker class s.t. D(Pn) ∈ F w.p. tending to 1. Note: this condition can
be removed if we use cross-fitting.

(d) Term 4: is a second order remainder term.
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Motivating the definition of a one-step estimator, which removes the source of excess bias:

ψos,n := ψ(Pn) + PnD(Pn)

Under the conditions above, Terms 3 and 4 are oP (n
−1/2), implying

ψos,n − ψ0 = PnD(P0) + oP (n
−1/2)

Implying that the one-step estimator is asymptotically linear with influence function equal to the EIF,
meaning it is efficient.
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8 Strategies

8.1 Identify a Bayes Rule

Strategy 1 (Squared Error Loss): if we are using squared error loss, the Bayes rule for estimating Ψ(θ)
is the posterior mean:

DΠ := E(Ψ(θ)|X = x)

Strategy 2 (Abs deviation loss): if using absolute deviation loss, the Bayes rule for estimating Ψ(θ) is
the posterior median:

DΠ := median(Ψ(θ)|X = x)

Strategy 3 (Minimize Bayes Risk Function): if the loss is convex, we can minimize the bayes risk
function

f : x→ E[{L(a, ψ(θ))|X = x}]

8.2 Prove Admissible Rule

Strategy 1 (Contradiction): assume another rule uniformly dominates it and achieve contradiction. A
good strategy is to show a rule is unique bayes or unique minimax, which guarantees admissibility.

Strategy 2 (Connect to squared error loss): if you have an admissible estimator under a certain loss
(e.g., squared error loss) and you want to assess admissibility under a related (e.g., weighted) loss,
assume not admissible and manipulate the inequalities to be in terms of the loss for which you have
admissibility.

8.3 Prove Minimax Rule

Strategy 1 (Submodel approach): Well suited for demonstrating minimaxity over semi/nonparametric
models. if D1 is minimax over P1, P1 ⊂ P2, and

sup
P∈P1

R(D1, P ) = sup
P∈P1

R(D1, P )

Then D1 is minimax over P2. For instance, the sample mean is minimax under squared error loss in
models with bounded variance because its risk is σ2/n, which is independent of the model family.

Strategy 2 (Connect to Bayes Rule): demonstrate a prior Π or prior sequence Πk such that

r(DΠ,Π) = sup
θ

R(DΠ, θ)

liminf
k→∞

r(DΠk
,Πk) = sup

θ
R(DΠ, θ)

Or alternatively, if the Bayes rule has a risk function that does not depend on θ, naturally the first
condition is satisfied.

8.4 Prove consistency of an estimator

Strategy 0 (WLLN): sample means are guaranteed consistent by the WLLN.

Strategy 0.5 (CMT): is the estimator a continuous function of a consistent estimator?

Strategy 1 (Concentration results)
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(a) Hoeffding for bounded random variables.

(b) Chebyshev inequality for variables with finite expectations and shrinking variance.

(c) Chernoff bound if we have access to the MGF/Cumulant Generating function. Can leverage
chernoff is the variable is sub-Gaussian/sub-Exponential.

(d) For non-sample means, we rely on the bounded differences/McDiarmind Inequality.

[Strategy 2 (Plug-in estimator)]

(a) A plug-in estimator of the form Ψ(Fn) is consistent almost surely for Ψ(F ) when Ψ is a fixed
functional that is continuous wrt the supnorm metric.

Strategy 3 (Random Function / ERM – Prove F is Glivenko-Cantelli Class)

(a) If the target of inference is a random function, uniform consistency ||Pn − P ||F = oP (1) over a
function class F holds for Glivenko-Cantelli classes.

(b) If the loss function identifies the true (possibly infinite dimensional) parameter θ0 and θ̂ is an

ERM, controlling the regret ensures that θ̂
p→ θ0.

(c) Here is an incomplete list of GC classes.

i. Any VC class.

ii. VC permanence properties: unions, intersections, positive/negative restrictions, add, multi-
ply, compositions with fixed functions.

iii. If we are dealing with a real-valued function class that forms a vector space (e.g., polynomials
of degree at most n), the VC dimension is the dimension of the vector space.

(d) These results can also be useful for characterizing convergence rates.

8.5 Find asymptotic distribution of an random variable/estimator

Strategy 0: for random variables

(a) Work from first principles by writing and manipulating CDF

(b) Is it a sum of random variables with known CDFs?

(c) Are they transformations of random variables with known distributions?

Strategy 1: Central Limit Theorems for sample means.

(a) Levy CLT for univariate sample means.

(b) Multivariate CLT for multivariate iid data.

(c) LF CLT for independent but not IID data.

Strategy 1.5: Convergence Theory Results

(a) Slutsky’s Theorem guarantees convergence of sums, differences, products, quotients of random
variables where one converges weakly and another converges in probability.

(b) Portmanteau Lemma for other versions of weak convergence. Can we work out the CDF or show
convergence of CDFs?

Strategy 2: Delta methods if a differentiable function of statistics with known distributions

(a) Univariate delta method for real-valued functions

(b) Multivariate delta method for (Rd → R) and (Rd → Rp) functions.
(c) Delta method for ALEs: if your estimator can be written as a differentiable function of other

ALEs.
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Strategy 2.5 (M/Z Estimators): M and Z estimators are consistent and asymptotically normal under
conditions (Glivenko-Cantelli and Donsker respectively) on the loss functions (for M-estimators) or
estimating functions (Z-estimators).

Strategy 3: Donsker if an target of inference is a function-valued parameter.

(a) Common Examples

i. VC classes of functions: half line indicators, functions with bounded support, boolean-valued
functions with finite number of arithmetic operations, polynomials of degree less than some
number, and union/intersection/positive or negative restriction of other VC classes.

ii. Lipschitz Conditions: lipschitz functions or functions lipschitz in indexing parameters,

iii. Monotonicity and Bounded Variation (which are differences of bounded monotone functions).

(b) Permanence Properties

i. Negations, subsets, and closures of Donsker classes are Donsker.

ii. Sums, products, and unions of two Donsker classes are Donsker.

(c) Bracketing/entropy integral. In order to have a finite bracketing/entropy integral, one of the
following conditions must hold

i. Bracketing number:

logN[](ϵ,F , L2(P ) = O
(

1

ϵd

)
d < 2

ii. Covering number with envelope function F̄ satisfying PF̄ 2 <∞ and

log sup
Q
N(ϵ||F̄ ||Q,2,F , L2(Q)) = O

(
1

ϵd

)
d < 2

Where ||F̄ ||Q,2 = QF̄ 2

8.6 Establishing asymptotic linearity (ALE)

Strategy 1 (Expansion): Notice that ψn = Pnfn and ψ0 = P0f0, then

ψn − ψ0 = Pnfn − P0f0 = (Pn − P0)f0 + P0(fn − f0) + (Pn − P0)(fn − f0)

Red term: linear, the piece we want to isolate.

Blue term: To establish (Pn − P0)(hn − h0) = oP (1/
√
n) we require vdV 19.24:

(a) {hk}∞k=1 is a sequence of random functions in L2(P ) s.t., P (hn ∈ F) → 1 for Donsker class
F ⊂ L2(P )

(b) P (hn − h0)
2 = oP (1) for some h0 ∈ F (shrinking variance of random function)

Strategy 2 (ALE Delta Method): if ψn ∈ Rd is a multivariate asymptotic linear estimator, and we want
an asymptotic linear estimator for a real-valued, differentiable function f : Rd → R, f(ψn) is ALE for
f(ψ0) with influence w/ IF

ϕ̃P0
: x→ ⟨∇f(ψ0), ϕP0

(x)⟩

Strategy 3 (Functional Delta Method): best used via chain rule. Suppose we have a fixed, Hadamard
differentiable functional (at F0 relative to || · ||∞) of the empirical distribution ψn = Ψ(Fn). Then

Ψ(Fn)−Ψ(F0) =
1

n

n∑
i=1

Ψ̇(F0; 1(Xi ≤ ·)− F0) + op(n
−1/2)

Where Ψ̇ is the linear Gateaux derivative of Ψ perturbed in the direction Fn − F0.

Strategy 4 (U/V Statistic): does the functional depend on two independent draws from the same
distribution X1, X2 ∼ P? If so, linearization of the U/V statistic and identifying the dominant nonde-
generate term will establish asymptotic linearity.
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8.7 Computing a gradient of a pathwise differentiable parameter

Strategy 1: Computing a gradient of a pathwise differentiable functional ψ(P ) at P0 relative to M

(a) Before you begin, recalling if M1 ⊂M2 are nested models, then Grad(M2) ⊂ Grad(M1). Thus,
we can always find a gradient in a large nonparametric model and apply it to the submodel.

(b) If unfamiliar, choose a simple parametric submodel centered at P0. Often the linear submodel
will suffice

pθ,h(x) = [1 + θh(x)]p0(x)

If you’re working with a model with logs, you can use the exponential submodel.

pθ,h(x) :=
exp(θh(x))p0(x)∫
exp(θh(x))dP0(x)

(c) Compute the pathwise derivative of your parameter along the path

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

(d) Write the pathwise derivative from step 2 as an inner product of the score g and some function
D̃(P0)

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

= ⟨D̃(P0), g⟩

Note: D̃(P0) cannot depend on choice of g and must lie in L2(P0)

(e) To ensure the gradient lies in the (nonparametric) tangent space, recenter to mean 0

D(P0) := D̃(P0)− P0[D̃(P0)]

Strategy 2: do you have access to a RAL estimator? If so, the influence function of the RAL estimator
is also a gradient.

8.8 Deriving the tangent space

Strategy 1: does tangent space take the following forms?

(a) If model is parametric: the tangent space is just the linear span of the score vector for the
parameter β ∈ Rq. Thus, the tangent space is a linear span in Rq, implying it is a finite-
dimensional subset of L2

0(P ).

(b) If model is nonparametric: the tangent space is L2
0(P )

(c) If model is semiparametric: the more restrictive the semiparametric model, the smaller the tangent
space. Will be proper subspace of L2

0(P ).

Strategy 2: if we’re deriving the tangent space to a model M subject to a moment restriction, such as
P (g0) = 0, we use the linear submodel to obtain the restriction on what scores allow us to remain in
our tangent space ∫

g0[1 + θh]f0dx = 0

=⇒ P0(g0h) = 0

Projections of elements h ∈ L2
0(P ) onto TM is given by

h(x)− P (g0h)

P (g20)
g0(x)
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So the EIF of ψ(P ) = P (f) in this model is

D∗(P ) = f(x)− P (f)− P (g0f0)

P (g20)
g0(x)

Strategy 3: write the model in terms of fluctuating each component of the model separately. Break
model into variationally independent components.

For instance, suppose that X := (Y, Z) ∼ P ∈M . We can write

M ≡MZ ⊗MY |Z

Where MZ and MY |Z are models for PZ and PY |Z separately such that the two are variationally
independent of each other. Then the tangent space can be written as the sum of orthogonal subspaces

TM = TMZ
+ TMY |Z

And the projection onto M can be obtained by projection onto each of the subspaces.

Strategy 4: suppose P = AB and the parameter ψ depends on P only through A, B is an orthogonal
nuisance. We can write the total tangent space as

TM (P ) = TMA
(P ) +�����:0

TMB
(P )

Projection of the gradient onto TM is tantamount to projection onto TMA
, since the pathwise derivative

is 0 along paths that fluctuate PB . Thus, the EIF is entirely contained in TMA
and restricting the form

of the model PB , even assuming it is known, does not impact the efficiency of your estimator.

8.9 Computing projections onto the tangent space

Strategy 0: can you guess at the form of the projection? The guess must (a) lie in L2(P0), (b) lie in
the tangent space, and (c) the residual must lie in the orthogonal complement.

Strategy 1: consider X := (Y,Z) ∼ P0 ∈ M . The tangent space is TM = TMZ
+ TMY |Z . If MZ and

MY |Z are nonparametric:

TMZ
(P ) := {s ∈ L2

0(P ) : s(y1, z) = s(y2, z) ∀ z, y1, y2}
TMY |Z (P ) := {s ∈ L2

0(P ) : EP [s(Y,Z)|Z = z] = 0 ∀ z}

Then the projections onto the components of the tangent space are

Π[s|TMZ
(P )] = EP (s(Y,Z)|Z = z)

Π[s|TMY |Z (P )] = s(y, z)− EP (s(Y,Z)|Z = z)

Strategy 2: if the model is composed of independent components, modelled nonparametrically, X :=
(Y,Z) ∼ P0 ∈ M s.t. TM = TMZ

(P ) + TMY |Z (P ), then the projection onto each of the subspaces is
given by

Π[s|TMY
(P )] = EP (s(Y,Z)|Y = y)

Π[s|TMZ
(P )] = EP (s(Y, Z)|Z = z)

Strategy 3: ifM is a parametric model {Pθ : θ ∈ Θ ⊂ Rp}, then the tangent space is a finite-dimensional
subspace corresponding to the linear span spanned of the score

TM =

{
uT

∂

∂θ
log pθ(x) : u ∈ Rq

}
Letting gθ(x) :=

∂
∂θ log pθ(x) denote the score with respect to θ, the projection of s ∈ L2

0(P0) onto the
space is obtained by

Π[s|TM ] =
E0[s(X)gθ(X)]

E[gθ(x)2]
gθ(x)

44



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

9 Examples

9.1 Decision Theory

9.1.1 Bayes Rules

Example 9.1 (Bayes rule, admissible, minimax rule under modified squared error loss (P4 Theory
Exam 2021)). Suppose Z is a random variable with PMF

pθ(z) = (1− θ)θz z ∈ {0, 1, . . .}

For θ[0, 1). We sih to study the performance of estimators of θ which will be judged by the risk function

R(T, θ) =
EPθ

({θ − T (Z)}2)
1− θ

(a) Calculate the Bayes rule. Suppose we have a prior Π with nondegenerate support on [0, 1).
To find the Bayes rule, we minimize the Bayes risk function wrt the action a.

TΠ = argmin
a

Eθ
[
{θ − a}2

1− θ
|Z = z

]

=⇒ a =
Eθ
[

θ
1−θ |Z = z

]
Eθ
[

1
1−θ |Z = z

]
We can write these posterior expectations conditional on Z = z by integrating the value against
the PMF.

TΠ =

∫
θ

1−θ (1− θ)θzdΠ∫
1

1−θ (1− θ)θzdΠ
=

EΠ(θ
z+1)

EΠ(θz)

Which is a ratio of posterior expectations.

(b) Prove TΠ is admissible if Π is a fixed prior with nondegenerate support. We know that all
unique Bayes rules are admissible. As shown in part (a), the Bayes rule must satisfy:

TΠ =
EΠ(θ

z+1)

EΠ(θz)
=⇒ [EΠ(θ

z)]TΠ −
[
EΠ(θ

z+1)
]
= 0

Thus, when Π is fixed, TΠ is a solution in X to the problem aX − b = 0 for fixed a, b ∈ R. This
is a linear system of equations with only one solution. Thus, TΠ is the unique Bayes rule and
therefore is admissible.

(c) Show constant risk: consider the estimator T (z) = 0.5I(z = 0) + I(z ≥ 1). Show the risk
function is constant over all θ ∈ Θ. Notice that P (Z = 0) = (1 − θ)θ0 = (1 − θ) therefore
P (Z ≥ 1) = θ.

R(T, θ) =
EPθ

({θ − T (Z)}2)
1− θ

=
EPθ

({θ − (0.5I(z = 0) + I(z ≥ 1))}2)
1− θ

=
θ2 − 2θEPθ

(0.5I(z = 0) + I(z ≥ 1)) + EPθ
((0.5I(z = 0) + I(z ≥ 1))2)

1− θ
]]

=
θ2 − θ(1− θ)− 2θ2 + 0.25(1− θ) + θ

1− θ

= 0.25

Therefore, this particular form of T (z) ensures that the risk function R is constant over θ.
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(d) Exhibit a minimax estimator: the idea is to find a minimax estimator by finding a prior such
that the Bayes rule developed in part (a) equals the estimator developed in part (c) which has
constant risk. Bayes rule + constant risk implies minimax! Setting our bayes estimator equal to
our estimator with constant risk, we see

EΠ(θ
z+1)

EΠ(θz)
=

1

2
I(z = 0) + I(z ≥ 1)

(z = 0 case) EΠ(θ
1) = E(θ0) · 1

2
I(z = 0) =

1

2

(z = 1 case) EΠ(θ
2) = E(θ1) · I(z ≥ 1) =

1

2
...

This implies that all the moments of EΠ[θ] =
1
2 . The only distribution with constant raw moments

is a Bernoulli distribution with p = 1/2. Thus, TΠ is minimax!

Example 9.2 (Bayes, Admisible, Minimax Rules in Poisson-Gamma Model (581 Midterm P3)). Sup-
pose X ∼ Pois(λ). Consider the weighted squared error loss for λ:

L(T (X), λ) :=
(T (X)− λ)2

λ

(a) Compute Bayes Estimator when Π ≡ Gamma(λ|a, b) with density baλa−1 exp(−bλ)/Γ(a).
First calculate the form of the posterior:

λ|X ∝ X|λ×Π

∝ λx exp(−λ)
x!

× baλa−1 exp(−bλ)/Γ(a)

∝ λx+a−1 exp(−(b+ 1)λ) ≡ Gamma(x+ a, b+ 1)

Next, we find the form of the Bayes Estimator by minimizing the Bayes risk function with respect
to the action

∂f

∂a
=

∂

∂a
E
[
(a− λ)2

λ

∣∣∣X = x

]
= 0

a =
1

E
[
1
λ |X = x

]
Now, since λ ∼ Gamma(x+1, b+1), 1/λ ∼ Inv Gamma(x+a, b+1) which has mean (b+1)/(x+
a− 1). Therefore, the bayes rule takes value

TΠ(x) =
1

(b+ 1)/(x+ a− 1)
=
x+ a− 1

b+ 1

(b) Prove T (X) = X is Minimax under loss. Note that under the specified loss

R(X,λ) = E

((
(X − λ)

λ1/2

)2
)

= E(χ2
1) = 1

Thus, the risk function is constant over λ ∈ (0,∞). Our new goal is to construct a sequence of
priors Πk such that

lim
k→∞

r(DΠk
,Πk) = sup

λ
R(X, θ)

We derived the Bayes estimator for Π ∼ Γ(a, b) prior to be x+a−1
b+1 . To prove T (x) = x is minimax,

we can choose the prior sequence Πk ∼ Γ(a = 1+1/k, b = 1/k) such that asymptotically, the Bayes
rule DΠk

→ X which will attain the constant risk value demonstrated above. Thus, X is minimax.
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9.1.2 Minimax Rules

Example 9.3 (Sample mean is minimax). Consider X1, . . . , Xn
iid∼ N(θ, σ2) with σ2 known. We claim

X̄n is minimax. Under squared error loss, letting T : X1, . . . , Xn → X̄n

R(X̄n, θ) = E[(X̄n − θ)2] =
σ2

n

Consider the prior sequence Πk := N(0, k). Under this model, the posterior takes the form

θ|X ∼ N

(
x̄nn/σ

2

1/k + n/σ2
,

1

1/k + n/σ2

)
Under squared error loss, the Bayes rule is the posterior mean

r(TΠk
,Πk)− E[(x̄n − θ)2] = E

[(
x̄nn/σ

2

1/k + n/σ2
− θ

)2
]
= E[(x̄n − θ)2] → 0

Thus, sup
θ∈Θ

R(D, θ) = σ2

n = lim
k→∞

r(TΠk
,Πk). This implies X̄n is minimax in P1 := {N(θ, σ2) : θ ∈

R, σ2 known} by Strategy 3 under Finding Minimax Rules.

We can go further and show that X̄n is minimax with respect to distributions with bounded variance.
Consider P2 := {P ∈ Qn; support(Q) ⊂ R,VarQ(X) ≤ σ2)}. Note that for any distribution in P2, by
CLT

R(X̄n, θ) =
VarQ(X)

n
≤ σ2

n

Thus, sup
P∈P1

R(D1, P ) = sup
P∈P2

R(D1, P ) implying by Strategy 4 in Finding Minimax Rules that X̄n is

minimax over P2.

Example 9.4 (Lower Bounding the Minimax Risk of a density at a point – Le Cam’s Method).
Let P(β, L) be the collection of densities (q ≥ 0,

∫
q(x)dx = 1) that belong in a Holder class Σ(β, L)

meaning the density is (β − 1)-times differentiable with derivative q(β−1) that satisfies for all x1, x2∣∣∣q(β−1)(x1)− q(β−1)(x2)
∣∣∣ ≤ L|x1 − x2|

If our goal is to estimate the density at a point, p(x0), we can pursue Le Cam’s Method.

(a) Propose two candidate distributions with large discrepancy and small KL diveregence. Let ϕ denote
the density of a standard normal RV;

p1 : x→ σ−1ϕ

(
x− x0
σ

)
p2 : x→ p1 + Lhβn

[
K

(
x− x0
hn

)
−K

(
x− 1− x0

hn

)]
Where for sufficiently small a > 0, K : x→ a exp

(
− 1

1−4x2

)
I(|x| ≤ 1/2).

(b) Verify p1, p2 ∈ P.

i. p2: Let Hβ(x) is the β-the Hermite polynomial.

dβ

dxβ
p1(x) = (−1)βHβ(x)ϕ(x)

Since lim
|x|→∞

1√
2π
Hβ(x)e

−x2/2 = 0 and the derivative is continuous,
∣∣∣ dβdxβ p1(x)

∣∣∣ is bounded

uniformly by a constant. We can make this constant ≤ L by choosing σ large enough.

47



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

ii. p2: clearly integrates to 1 because of bump term cancellations. In order for p2 to be positive,
we need to choose a∗ such that

0 < p1(x)− LhβnK

(
x− hn − x0

hn

)

=⇒ 0 < p1(x)− Lhβna exp

− 1

1− 4
(
x−hn−x0

hn

)2
 I

(∣∣∣∣x− 1− x0
hn

∣∣∣∣ ≤ 1/2

)

=⇒ 0 < p1(x)− Lhβna exp

− 1

1− 4
(
x−hn−x0

hn

)2
 I

(
x0 + 1− hn

2
≤ x ≤ x0 + 1 +

hn
2

)

=⇒ a∗ < inf
x∈I(...)

p1(x)

Lhβn exp

(
− 1

1−4( x−hn−x0
hn

)
2

)
To ensure p2 is in the Holder class, it is sufficient to show that q is β-times differentiable with
bounded derivatives. We note that the Bump functions K and its β derivatives are continuous
functions defined on a compact interval, therefore they obtain their maxima and minima. This
means that the β-th derivative is upper bounded by a constant, and we can force this constant
to be less than L by choosing σ, a > 0 small enough.

(c) Study KL divergence, using the Taylor expansion log(1 + x) = x− x2

2 + x3

3 + . . .

−KL(P1, P2) =

∫
log

(
p2
p1

)
p1dν

=

∫
log

(
p1 + bump

p1

)
p1dν

=

∫  ∞∑
i=1

(−1)i+1

(
bump
p1

)i
i

 p1dν

1st order term =

∫
bump dν = 0

2nd order term =
1

2

∫
bump2

p1(x)
dν

=
1

2

∫
L2h2βp1(x)

−1

[
K

(
x− x0
hn

)
−K

(
x− 1− x0

hn

)]2
dν

hnsmall
= c1h

2β
n

∫
p−1(x)

[
K

(
x− x0
hn

)2

−K

(
x− 1− x0

hn

)2
]

(hn small bumps don’t overlap)

= c1h
2β+1
n

∫
p−1(hnU + x0)

[
K (U)

2 −K

(
U − 1

hn

)2
]
dU

= c2h
2β+1
n

3rd order term = o(h3β)

Now the KL-divergence under n-iid draws yields

−KL(Pn1 , P
n
2 ) ≥ cnh2β+1

n

To get a stable lower bound on the KLD, we require hn = O(n−
1

2β+1 ).
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(d) Study Discrepancy:

d(P1, P2) =
1

2
(p1(x0)− p2(x0))

2

=
1

2

(
p1(x0)− p1(x0)− Lhβn

[
K(0)−K

(
− 1

hn

)])2

= Ch2βn

We have all the pieces we need now. Applying Le Cam’s method, we obtain

inf
T∈T

sup
P∈P

R(T, P ) ≥ 1

4
d(P1, P2) exp(−KL(P1, P2)) ≥ c · h2βn

In order for the KL divergence to have a stable lower bound, we required hn = O(n−
1

2β+1 ).

inf
T∈T

sup
P∈P

R(T, P ) ≤ c∗n−
2β

2β+1

Thus a lower bound on the minimax rate is O(n−
2β

2β+1 ) which is a slightly slower than parametric rate.

Example 9.5 (Lower bounding minimax risk of smooth regression function – Fano’s Method). Suppose

we observe (X1, Y1), . . . , (Xn, Yn)
iid∼ Q ∈ Q, where X ∼ U [0, 1] and Y |X = x ∼ N(fQ(x), 1) where

fQ(x) ∈ F(β, L) a Holder class. Suppose our objective is to estimate fQ(x), with performance quantified
by the mean integrated squared error:

L(a,Qn) =

∫ 1

0

[a(x)− fQ(x)]
2dx

We take the following few steps

(a) Define candidate function class. Let F1 denote a convex combination of orthonormal basis func-
tions where the elements of the basis are scaled bump functions:

F1 :=

x→
m∑
j=1

wjϕj(x) : w ∈ {0, 1}m, ϕj(x) = LhβK

(
x− j

m+1

h

)
,m ∈

[
8,

1

h− 1

]
Where for sufficiently small a,

K : x→ a exp

(
− 1

1− 4x2

)
I(|x| < 1/2)

So F1 is a collection of functions that are sums of m bump functions centered at j
m+1 for j =

1, . . . ,m, that are multiplied by 0 or 1, and that do not overlap since m ≤ 1
h = 1 =⇒ h ≤ 1

m+1 .
Recall that Ω := {0, 1}m indexes the collection of functions in F1. Thus, |F1| = |Ω| = 2m.
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(b) Study the discrepancy:

d(Pw, Pν) =
1

2

∫
[fw(x)− fν(x)]

2dx

=
1

2

m∑
j=1

[wj − νj ]
2

∫
ϕj(x)

2dx (Bases orthogonal so cross terms cancel)

=
1

2

m∑
j=1

[wj − νj ]
2L2h2β+1

∫
K(u)2du︸ ︷︷ ︸
c2

(U-sub)

=
1

2
c2L

2h2β+1
m∑
j=1

[wj − νj ]
2

︸ ︷︷ ︸
Hamming dist

= c3h
2β+1H(w, ν)

(
c3 :=

c2L
2

2

)
The minimal Hamming distance for two functions in that differ is exactly 1, yielding;

min
j ̸=k

d(Pj , Pk) = c3h
2β+1

(c) Study the KL divergence. Turns out KL divergence takes the form:

KL(Pw, Pν) =
n

2

∫ 1

0

[fw(x)− fν(x)]
2dx

= c3nh
2β+1H(w, ν) (By same logic)

≤ c3nh
2β+1m (since H(w, ν) ≤ m)

(d) Plug into Fano’s Bound: recall that Ω := {0, 1}m indexes the collection of functions in F1.

inf
T∈T

sup
P∈P

R(T, P ) ≥
min
j ̸=k

d(Pj , Pk)

2

1− log 2 + max
j ̸=k

KL(Pj , P̄ )

log(|Ω|)


≥ c3h

2β+1

2

(
1− log 2 + c3nh

2β+1m

log |Ω|

)
=
c3h

2β+1

2

(
1− log 2 + c3nh

2β+1m

m log 2

)
For this bound to be informative, h = O(n−1/(2β+1)). But this produces a lower bound on the
minimax risk of O(n−1), meaning the problem is as least as difficult as a parametric problem.
This suggests that the bound may not be tight.

(e) Tighten the bound using the Varshamov-Gilbert Lemma. For m ≥ 8, there exista an Ω ⊂ Ω s.t.
|Ω| ≥ 2m/8 and min

w ̸=v
H(w, v) ≥ m

8 . If we choose this subset

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1m

16

(
1− log 2 + c3nh

2β+1m
m
8 log 2

)
=
c3h

2β+1m

16

(
1− 8

m
− 8c3nh

2β+1

log 2

)
Goal is to choose m as large as possible to provide the tightest bound. If we choose m = ⌊ 1

h − 1⌋.
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We know that 1
2h < m < 1

h . Plugging in the lower bound, we have

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1m

16

(
1− 8

m
− 8c3nh

2β+1

log 2

)
≥ c3h

2β

32

(
1− 16h− 8c3nh

2β+1

log 2

)
To ensure that the negative term above is bounded, we require n = h2β+1 =⇒ h = O(n−1/(2β+1)).

Since the bandwidth is h = O(n−1/(2β+1)), the lower bound on the minimax risk is O(n−2β/(2β+1)).

9.1.3 Admissible Rules

Example 9.6 (Posterior Mean is Admissible in Normal Model). Let X1, . . . , Xn
iid∼ N(θ, σ2) and

θ ∼ N(µ, τ2). We will show that the following estimator is admissible

TΠ : (X1, . . . , Xn) →
(
1− 1/τ2

1/τ2 + n/σ2

)
X̄n +

(
1/τ2

1/τ2 + n/σ2

)
µ

By Strategy 1 in finding admissible estimators, we are using squared error loss and the Bayes risk is
finite because all the random quantities are finite. Also, the normal distribution is absolutely continuous
wrt the Lesbegue measure and vice versa. Therefore, TΠ is unique Bayes and therefore admissible for(

1/τ2

1/τ2+n/σ2

)
∈ (0, 1).

When
(

1/τ2

1/τ2+n/σ2

)
= 0, T : x→ µ is admissible because it is a constant estimator that achieves risk 0

when θ = µ. When
(

1/τ2

1/τ2+n/σ2

)
= 1, turns out the sample mean is admissible, but this requires further

proof.

Example 9.7 (Sample mean is Admissible in Normal Model). Let X1, . . . , Xn
iid∼ N(θ, σ2) with σ2

known. We claim that X̄n is admissible in the model.
We will show by demonstrating either

(a) R(T, θ) ≥ R(X̄n, θ) ∀θ ∈ R

(b) There exists some θ for which R(T, θ) > R(X̄n, θ)

Consider WLOG σ2 = 1. Suppose (a) does not hold. We will show that (b) holds. If (a) does not
hold, there exists a θ1 s.t. R(T, θ1) < R(X̄n, θ1). By continuity of R, there exists ϵ, δ > 0 s.t. for all
θ ∈ (θ1 − δ, θ1 + δ),

R(T, θ) < R(X̄n, θ)− ϵ =
1

n
− ϵ

Specifying the prior Π = N(0, τ2) and the Bayes rule TΠ as the posterior mean, we obtain

r(TΠ,Π)−R(X̄n, θ) =

∫
R

(
n

1/τ2 + n
X̄n, θ

)
dΠ(θ)− 1

n

=

∫ (
n

1/τ2 + n
X̄n − θ

)2

· 1√
2πτ2

exp

(
− 1

2τ2
θ2
)
dθ − 1

n

=
τ2

1 + nτ2
− 1

n
= − 1

n(1 + nτ2)

By optimality of the Bayes rule

r(TΠ,Π)−R(X̄n, θ) ≤ r(T1,Π)−R(X̄n, θ)

=⇒ τ2

1 + nτ2
− 1

n
= − 1

n(1 + nτ2)
≤
∫ [

R(T1, θ)−
1

n

]+
Π(dθ)−

∫ [
R(T1, θ)−

1

n

]−
Π(dθ)

51



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

Recall that for θ ∈ (θ1 − δ, θ1 + δ) and R(T1, θ) <
1
n − ϵ implying [R(T1, θ)− 1/n]− > ϵ. Then simple

bounding yields ∫ [
R(T1, θ)−

1

n

]−
Π(dθ) ≤

∫ θ1+δ

θ1−δ

[
R(T1, θ)−

1

n

]−
Π(dθ)

≤ ϵ

∫ θ1+δ

θ1−δ
dΠ(θ)

= ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

Implying ∫ [
R(T1, θ)−

1

n

]+
dΠ(θ) ≥ − 1

n(1 + nτ2)
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

Noting that

√
2πτ

(
− 1

n(1 + nτ2)
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

)
τ→∞−→ 2ϵδ

Thus, choosing τ0 s.t.
√
2πτ0

(
− 1
n(1+nτ2

0 )
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

)
> ϵδ we obtain

∫ [
R(T1, θ)−

1

n

]+
dΠ(θ) ≤

(
− 1

n(1 + nτ20 )
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

)
>

ϵδ√
2πτ0

> 0

Thus, ther exists θ for which R(T, θ) > R(X̄n, θ) implying condition (b) holds. Thus, the sample mean
is admissible.

Example 9.8 (Sample mean is inadmissible in d ≥ 3). Suppose X1, . . . , Xn ∼ N(θ, Id) for d ≥ 3. Let
T JS be the James-Stein estimator:

T JS : x→

{(
1− (d−2)

n||x̄n||2

)
x̄n if x̄n ̸= (0, . . . , 0)

0 if x̄n = (0, . . . , 0)

Under MSE loss, letting T denote the sample mean

R(T JS , θ) = E[||T JS(||X||)X − θ||2] (T is spherically symmetric est)

= E
[
||[T JS(||X||)− 1]X + [X − θ]||2

]
= E

[
||[T JS(||X||)− 1]X||2

]
+ E[||X − θ||2]− 2E

[
⟨[1− T JS(||X||)]X, X − θ⟩

]
= E

[
(d− 2)2

||X||2

]
+R(T, θ)− 2(d− 2)E

[〈
X

||X||2
, X − θ

〉]
To show the third term in the above display is −2E

[
||[T JS(||X||)− 1]X||2

]
, we appeal to Stein’s Lemma.

Stein’s Lemma: Letting Y ∼ N(µ, σ2Id) and g1, . . . , gd be functions from Rd → R s.t. for all j =

1, . . . , d, E
∣∣∣ ∂∂yj gj(y)|y=Y ∣∣∣ <∞. Letting g : y → (g1(y), . . . , gd(y)), we have

E[⟨g(Y ), Y − µ⟩] = σ2E

 d∑
j=1

∂

∂yj
gj(y)
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Define gj : z → zj
||z||2 . Then we see that

E
[〈

X

||X||2
, X − θ

〉]
= E [⟨g(X), X − θ⟩]

= E

 d∑
j=1

∂

∂yj
gj(y)

 (Stein’s Lemma)

= E

 d∑
j=1

1

||X||2
− 2Xj

||X||4

 (Quotient Rule)

= E
[

d

||X||2
− 2||X||2

||X||4

]
= E

[
d− 2

||X||2

]
Therefore,

R(T JS , θ) = E
[
(d− 2)2

||X||2

]
+R(T, θ)− 2(d− 2)E

[〈
X

||X||2
, X − θ

〉]
= E

[
(d− 2)2

||X||2

]
+R(T, θ)− 2E

[
(d− 2)2

||X||2

]
= R(T, θ)− E

[
(d− 2)2

||X||2

]
Therefore, R(T JS , θ) < R(T, θ) for all θ.

9.2 Hypothesis Testing

Example 9.9 (Power under local alternatives for location family). Suppose Xn
1 ∼ Pθ for location

family where (i) Pθ has density f(x−θ), (ii) f is symmetric about 0, (iii) f is positive and continuously
differentiable with finite second moment.
Suppose we wish to test H0 : θ = 0 and H1 : θ > 0 with the following sign and t-statistics:

(a) Sign: Sn = 1
n

∑
I(Xi > 0)

(b) t-statistic: Tn = 1
n

∑ Xi

σ̂n
where σ̂n is the empirical standard deviation.

The estimators are both asymptotically linear:

√
n

(
Sn − 1

2

)
=

1√
n

n∑
i=1

(
I(Xi > 0)− 1

2

)
⇝ N(0, 1/4)

√
nTn =

1√
n

n∑
i=1

Xi

σ
+ op(1)
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Let’s show that both estimators are regular. For the sign statistic, µ(θ) := Pθ(X > 0)

µ̇(0) =
∂

∂θ
Pθ(X > 0)

∣∣∣
θ=0

=
∂

∂θ

∫ ∞

0

f(x− θ)dx
∣∣∣
θ=0

=

∫ ∞

0

∂

∂θ
f(x− θ)

∣∣∣
θ=0

dx

= −
∫ ∞

0

ḟ(x)dx =

∫ [
− ḟ(x)
f(x)

]
I(x > 0)dP0(x)

=

∫
ℓ̇0(x)I(x > 0)dP0(x)

= P0(ℓ̇0s0)

Recall regularity is equivalent to P0(gθ ℓ̇θ) = µ̇(θ). Note that θ = 0 under H0 implies Sn is regular.
Now for the t-statistic, let µ(θ) := θ/σ. We have∫

ℓ̇0t0(x)dP0(x) =

∫
ℓ̇0(x)

x

σ
dP0(x)

= −σ−1

∫
ḟ(x)

f(x)
xdP0(x)

= −σ−1

∫
ḟ(x) · xdx

= σ−1

∫ (
f(x)− d

dx
[xf(x)]

)
dx (Product rule and add subtract)

= σ−1 − lim
a→∞

∫ a

−a

(
d

dx
[xf(x)]

)
dx (Pdf integrates to 1)

= σ−1 − lim
a→∞

a[f(a)− f(−a)]

= σ−1 = µ̇(0)

Thus, Tn is also regular.

Knowing Sn and Tn are regular ALEs, we know that their corresponding tests

I(
√
n(2Sn − 1) > z1−α)

I(
√
nTn > z1−α)

have power functions under local alternatives take the form for all h:

πn

(
h√
n

)
n→∞
⇝ 1− Φ

(
z1−α − hT

µ̇(0)

σ(0)

)
=⇒ Pθ+h/

√
n(
√
n(2Sn − 1) > z1−α) = 1− Φ (z1−α − 2hf(0))

=⇒ Pθ+h/
√
n(
√
n(Tn) > z1−α) = 1− Φ

(
z1−α − hσ−1

)
Thus, we can compare the relative power of the sign test to the t-test under local alternatives by the
ratio of their two slopes:

(a) If 2f(0)σ > 1, the sign test has greater local power.

(b) If 2f(0)σ < 1, the t test has greater local power.

This indicates when f(0) is very large relative to the variance σ, the sign test is more powerful under
local alternatives asymptotically. For instance, if we consider f to be a density that for small ϵ > 0,
places mass (1 − ϵ) on Unif(−1, 1) and ϵ mass at N(0, ϵ4), then the sign test will have much greater
power.
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9.3 Empirical Process Theory

9.3.1 Concentration Inequalities

Example 9.10 (Bivariate U statistic (McDiarmind’s Inequality)). A good use case of McDiarmind’s
inequality is in the study of the concentration of U -statistics, where g : R2 → R and

U :=

(
n

2

)−1∑
j≤k

g(Xj , Xk)

If g is bounded, say ||g||∞ ≤ b, then McDiarmind’s inequality yields for a given coordinate k:

|f(x)− f(x\k)| ≤
(
n

2

)−1∑
j ̸=k

|g(xj , xk)− g(xj , x
′
k)|

≤ (n− 1)(2b)(2)

(n)(n− 1)
=

4b

n

So the bounded differences property holds with parameter ci =
4b
n in each coordinate. By McDiarmind’s

Inequality

P (|U − E(U)| ≥ t) ≤ 2 exp

(
−nt

2

8b2

)
Example 9.11 (Gaussian Order Statistics (Lipschitz Transformation of Gaussian)). Let X(k) denote
the k-th order statistic of a Gaussian random vector. Let Y(k) denote the k-th order statistic from an
iid ghost sample from the same Gaussian distribution. Turns out

|X(k) − Y(k)| ≤ ||X − Y ||2

so each order statistic is 1-Lipschitz. Based on the concentration result for lipschitz transformations of
Gaussian random vectors

P [|X(k) − E[X(k)]| ≥ δ] ≤ 2 exp

(
−δ

2

2

)

9.3.2 Establish Uniform LLN and Upper Bounding Empirical Process Terms

Example 9.12 (Establish Uniform LLN in Lipschitz Function Class – Dudley). If F denotes a class
of [0, 1] → R-valued Lipschitz functions s.t., |f(x)− f(y)| ≤ L|x− y|.
Let’s first derive the metric entropy (log covering number) of the function class F . Create M = ⌊ 1

ϵ ⌋
grid points xi = (i− 1)ϵ for i = 1, . . . ,M on [0, 1]. Defining ϕ as

ϕ(u) :=


0 if u < 0

u if 0 ≤ u ≤ 1

1 else

For any binary sequence β = {−1,+1}M , define a function fβ such that

fβ(y) =

M∑
i=1

βiLϵϕ

(
y − xi
ϵ

)
consider the interval from y ∈ (0, x1). ϕ increases linearly in y − xi the interval with slope ±L. Thus,
fβ(y) is piecewise linear with slope ±L over each pair of gridpoints. For any two functions fβ , fβ′ ,
there is at least one interval where the two functions start at the same point and have opposite slopes,
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implying that ||fβ − fβ′ ||∞ ≥ 2Lϵ. Thus, {fβ , β ∈ {−1,+1}M} forms a 2Lϵ-packing in the supnorm.
By relationships between covering and packing numbers

2M = |fβ | ≤M(2Lϵ,F , || · ||∞) ≤ N(Lϵ,F , || · ||∞)

Defining δ = ϵL, and recalling that M = ⌊ 1
ϵ ⌋, we have

C · L
δ
≤ logN(δ,F , || · ||∞)

Also by plotting {fβ , β ∈ {−1,+1}M}, one can see that the farthest an element of F can be from a
given fβ pointwise is Lϵ. Thus, {fβ , β ∈ {−1,+1}M} is a δ-cover for F . The covering number (size
of smallest cover), then:

N(δ,F , || · ||∞) ≤ |fβ | = C∗ · L
δ

Therefore, going back to ϵ > 0 notation

sup
Q

log(N(ϵ,F , L2(Q))) = log(N(ϵ,F , || · ||∞) = O
(
L

ϵ

)
Recognizing that D = 2L <∞, Dudley’s entropy integral gives:

E||Rn||F ≤ 8√
n
sup
Q

[∫ ∞

0

√
logN(ϵ,F , L2(Pn))dϵ

]
≡ 8√

n

[∫ D

0

O
(
L

ϵ

)
dϵ

]
= O(n−1/2)

Therefore, the entropy integral is satisfied, and the empirical process term is controlled. Also, F is
Donsker since is satisfies the entropy integral.

Example 9.13 (Establish Uniform LLN in Class of Functions Lipschitz in Indexing Parameters –
Dudley). Let F := {gβ : β ∈ Rp; ||β||2 ≤ 1} be a collection of functions indexed by parameter β where
|gβ1

(x)− gβ2
(x)| ≤ L||β1 − β2||.

Step 1: Note that the indexing parameter set B = {β ∈ Rp : ||β||2 = 1} is a sphere of radius 1. We
previously proved that the ϵ-covering number of a ball of radius r has the upper bound

N(ϵ, B(0, r), || · ||Lp(P )) ≤
(
2r

ϵ
+ 1

)p
Step 2: we also know that functions Lipschitz in their indexing parameters also satisfy the following
covering number bound on their function space F

N(ϵ,F , || · ||F ) ≤ N(ϵ/L,B, || · ||B)

Step 3: bringing these two together

N(ϵ,F , || · ||F ) ≤ N(ϵ/L,B(0, 1), || · ||2) ≤
(
2 · 1
ϵ/L

+ 1

)p
=⇒ logN(ϵ,F , || · ||F ) ≤ p log

(
2L

ϵ
+ 1

)
≈ p log

(
L

ϵ

)
And the Dudley integral is:

8√
n

[∫ ∞

0

√
logN(ϵ,F , L2(Pn))dϵ

]
≤ 8√

n

∫ 2L

0

√
p log

(
L

ϵ

)
dϵ

⪅
8√
n
L
√
p

∫ 1

0

log(1/δ)dδ

⪅
8√
n
L
√
p

=⇒ E||Pn − P ||F ⪅ E||Rn||F = O
(
L
√
p

√
n

)
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Thus, a function that is Lipschitz in its 1-dimensional indexing parameter controls the empirical process
term at a O(n−1/2) rate! However, as the dimension of the indexing parameter increases, we get slower
convergence.

Example 9.14 (Establish Uniform LLN in Sobolev Class). Let F be a collection of functions f :
[0, 1] → R such that

(a) Uniformly bounded: ||f ||∞ ≤ 1

(b) Absolutely continuity of (k − 1)-th derivative

(c)
∫
f (k)(x)2dx ≤ 1 for some k ∈ N

There exists a constant C such that the log bracketing number wrt the supnorm metric takes form for
all ϵ ∈ [0, 1]:

logN[](ϵ,F , || · ||∞) ≤ C

(
1

ϵ

)1/k

Suppose k ≥ 1, then by the bracketing integral bound is finite;

E||Pn − P ||F ≤ C√
n

∫ 1

0

√
logN[](ϵ,F , || · ||∞)dϵ

≤ C∗
√
n

∫ 1

0

√
ϵ−1/kdϵ

= O(n−1/2)

Thus, we can control the empirical process term at O(n−1/2) rates. Also since the function class
satisfies the uniform entropy integral, it is Donsker.

9.4 M/Z Estimation

Example 9.15 (Limiting distributions and Regularity of Mean and Median (581 HW 8 P3)). Let µn
and mn be the sample mean and median respectively. Find the limit distributions of each under Pθ0
and Pθ0+h/

√
n given Pθ′ ≡ N(θ′, 1).

We start with the sample mean, µn. By WLLN, the sample mean is consistent and by the central limit
theorem,

√
n(µn − θ0)

Pθ0⇝ N(0, 1)

Recalling that the normal distribution is QMD and both distributions are mutually contiguous, local
asymptotic normality holds, the log likelihood ratio affords a taylor expansion, and is asymptotically
normal. The joint distribution between the sample mean and log likelihood ratio is normal with covari-
ance h. Le Cam’s third lemma says that the distribution of the MLE under sampling from the local
alternative is

√
n(µn − θ0)

Pθ0+h/
√

n
// N(h, 1) =⇒

√
n

(
µn −

(
θ0 +

h√
n

))
Pθ0+h/

√
n
// N(0, 1)

Thus, the MLE is invariance to local perturbations in the parameter, implying that it is a regular esti-
mator.

We now turn our attention to the sample median. The sample median can be defined as a z-estimator
that solves the estimating equation Pnzθ = 0 where zθ(x) = I(x ≤ θ)− 1

2 .
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We start by proving consistency. This is a 1-dimensional Z-estimator, where the estimating function is
decreasing in the parameter θ and has exactly one root. The sample estimating equation converges point
wise to the population estimating equation by WLLN. We also know that for the population median
equal to θ0 and small ϵ > 0,

P0(I(x ≤ θ0 + ϵ)− 0.5) < 0 < P0(I(x ≤ θ0 − ϵ)− 0.5)

Thus, mn
p→ θ0.

Now we characterize the asymptotic distribution of the sample median under Pθ0 . Checking the condi-
tions for asymptotic normality, we know that

(a) The estimating function zθ is squared differentiable because it is bounded.

(b) Pzθ is differentiable at θ0:

∂

∂θ
Pzθ

∣∣∣
θ=θ0

=
∂

∂θ
P

(
I(x ≤ θ)− 1

2

) ∣∣∣
θ=θ0

=
∂

∂θ
Fx(θ)−

1

2

∣∣∣
θ=θ0

= fx(θ0)

Recalling the form of the normal density, fx(θ0) =
1√
2π

.

(c) {zθ(x) : θ ∈ R} forms a Donsker class because it is a shifted indicator function, and indicator
functions are VC class.

Under these conditions

√
n(mn − θ0) = −V −1

θ0

1√
n

n∑
i=1

zθ0(Xi) + oP (1)
Pθ0 // N

(
0, V −1

θ0
P0[zθ0z

T
θ0 ](V

−1
θ0

)T
)

≡ N

0,
E((I(X ≤ θ0)− 0.5)2(

1√
2π

)2
 ≡ N(0, π/2)

Lastly, we investigate the distribution of mn under the local alternative. This relies on the applying Le
Cam’s third lemma for asymptotic linear estimators. For an asymptotic linear estimator with influence
function ϕθ, the asymptotic distribution under the local alternative is

√
n(mn − θ0)

Pθ0+h/
√

n
// N(P0(ϕθ0 · ℓ̇)h, P0ϕ

2
θ0)

Thus, we must evaluate the P0(ϕθ0 · ℓ̇) to learn the limiting distribution.

(a) Recall the influence function of mn is given by ϕ0(x) =
I(x≤θ0)− 1

2

f(θ0)
=

√
2π
(
I(x ≤ θ0)− 1

2

)
=

√
2π
(
1
2 − I(x ≥ θ0)

)
.

(b) Recall the score is given by ℓ̇(x) = ∂
∂θ −

1
2

∑n
i=1(Xi − θ0)

2 =
∑n
i=1(Xi − θ0).

Writing the inner product of these quantities we obtain by using the mean of a positive-restricted
normal.

P0(ϕθ0 · ℓ̇) =
∫ √

2π

(
1

2
− I(x ≤ θ0)

)
(x− θ0)dP0(x)

=

∫ √
2π

(
I(x ≥ θ0)−

1

2

)
(x− θ0)dP0(x)

=
√
2π

∫ ∞

0

(x− θ0)dP0(x) =
√
2π

1√
2π

= 1

Therefore, the sample median mn is also a regular estimator

√
n(mn − θ0)

Pθ0+h/
√

n
// N(h, π/2) =⇒

√
n

(
mn −

(
θ0 +

h√
n

))
Pθ0+h/

√
n
// N(0, π/2)
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9.5 Calculating Influence Functions

Each of these examples are taken from Chapter 20 in van der Vaart.

Example 9.16 (Mean functional). Suppose the sample mean ψ(Pn) is the plug-in estimator of the
mean functional ψ(P ) =

∫
xdP (x). By the von-Mises expansion, the influence function is

ψ′
P (δx − P ) =

d

dϵ

∫
x d[(1− ϵ)P + ϵδx](x)

∣∣∣
ϵ=0

= x−
∫
xdP (x)

Example 9.17 (Wilcoxon Mann-Whitney Statistic). Suppose (X1, Y1), . . . , (Xn, Yn) are random sam-
ple from a bivariate distribution with empirical distributions Fn and Gn for each margin. The Mann-
Whitney Statistic is a plug-in estimator of the functional ψ0 = ψ(P,G) =

∫
FdG:

ψ(Pn, Gn) =

∫
FndGn =

1

n2

n∑
i=1

n∑
j=1

I(Xi ≤ Yj)

The influence function of the Mann-Whitney statistic can also be calculated from the von-Mises expan-
sion

ψ′
P (δx − F, δy −G) =

d

dϵ

∫
((1− ϵ)F + ϵδx)d [(1− ϵ)G+ ϵδy]

∣∣∣
ϵ=0

=
d

dϵ

∫
(1− ϵ)2FdG+

∫
(1− ϵ)ϵFdδy +

∫
ϵ(1− ϵ)δxdG+

∫
ϵ2δxdδy

∣∣∣
ϵ=0

= F (y) + 1−G−(x)− 2

∫
FdG

Example 9.18 (Z estimators). The Z-estimator ψ(P0) is the solution to the population-based estimat-
ing equation P0zψ(P0) = 0. Differentiating with respect to ϵ across the identity

0 = (P + ϵδx)zψ(P+ϵδx) = Pzψ(P+ϵδx) + ϵzψ(P+ϵδx)(x)

Assumin the derivatives exist and zψ is continuous, we have that

0 =

(
∂

∂θ
Pzθ

)
θ=ψ(P )

[
d

dt
ψ(P + tδx)

]
t=0

+ zψ(P )(x)

Where the expression in parentheses is the influence function and is given by

−
(
∂

∂θ
Pzθ

)−1

θ=ψ(P )

zψ(P )(x)

Example 9.19 (Quantiles). The pth qauntile of distribution function F is ψ(F ) = F−1(p). We set
Fϵ = (1− ϵ)F + ϵδx and differentiate wrt ϵ the identity

p = FϵF
−1
ϵ (p) = (1− t)F (F−1

ϵ (p)) + ϵδx(F
−1
t (p))

We find that

0 = −F (F−1(p)) + f(F−1(p))

[
d

dϵ
F−1
ϵ (p)

]
t=0

+ δx(F
−1(p))

Where the influence function is given by[
d

dϵ
F−1
ϵ (p)

]
t=0

= ψ′
F (δx − F ) = − I(x ≤ F−1(p))− p

f(F−1(p))

This implies that the sequence of empirical quantiles is asymptotically normal

√
n(F−1

n (t)− F−1(t))⇝ N

(
0, P0

[
− I(x ≤ F−1(p))− p

f(F−1(p))

]2)
≡ N

(
0,

p(1− p)

f(F−1(p))2

)
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Example 9.20 (Cramer-von Mises statistic: higher order expansion). The Cramer-von Mises statistic
ψ(Fn) estimates the following parameter ψ(F ) =

∫
(F − F0)

2dF0 for some fixed F0. The von-Mises
expansion yields

ψ(F + ϵH) =

∫
(F + ϵH − F0)

2dF0 =

∫
(F − F0)

2dF0 + 2ϵ

∫
(F − F0)HdF0 + ϵ2

∫
H2dF0

The first derivative is

∂

∂ϵ
ψ(F + ϵH)

∣∣∣
ϵ=0

= 2

∫
(F − F0)HdF0

Plugging in ϵ = 1/
√
n and H = Gn =

√
n(F − F0), we have

ψ′
F0
(H) =

∂

∂ϵ
ψ(F0)

∣∣∣
ϵ=0

= 2

∫
(F0 − F0)HdF0 = 0

Therefore, first order expansion is degenerate. To determine the asymptotic distribution, we must go
to the second order derivative

ψ′′
F0
(H) =

∂2

∂ϵ2
ψ(F + ϵH)

∣∣∣
ϵ=0

= 2

∫
H2dF0

Which for ϵ = 1/
√
n and H = Gn =

√
n(F − F0) produces

ψ′′
F0
(Gn) = 2

∫
GndF0

The von Mises expansion suggests the following approximation

ψ(Fn)− ψ(F ) =
���

���*0
1√
n
ψ′
F0
(Gn) +

1

2!

1

n2/2
ψ′′
F0
(Gn) + . . .

≈ 1

n

∫
GndF0

9.6 Semiparametric/Nonparametric Inference

9.6.1 Function-valued parameters

Example 9.21 (Uniform confidence bands for CDF). Suppose our goal is to construct confidence
bands for the CDF F0(t) uniformly over all t ∈ R. We estimate F0(t) with the class of functions
F := {x→ I(x ≤ t) : t ∈ R}. By Donsker’s Theorem and the continuous mapping theorem,

Gn ⇝ G in ℓ∞(F)

||Gn||F ⇝ ||G||F

Our goal of constructing valid confidence bands is equivalent to finding {Ln(t), Un(t)} such that

lim
n→∞

P (Ln(t) ≤ F0(t) ≤ Un(t)) ≥ 1− α ∀ t ∈ R

We propose the following bounds where c is the (1− α)-quantile of ||G||F

Ln(t) := Fn(t)−
c√
n

Un(t) := Fn(t)−
c√
n
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These bounds are asymptotically valid because

lim
n→∞

P0(Ln(t) ≤ F0(t) ≤ Un(t)) ∀t ∈ R

= lim
n→∞

P0

(
Fn(t)−

c√
n
≤ F0(t) ≤ Fn(t)−

c√
n

)
∀t ∈ R

= lim
n→∞

P0

(
−c ≤

√
n(F0(t)− Fn(t)) ≤ c

)
∀t ∈ R

= lim
n→∞

P0

(√
n|Fn(t)− F0(t)| ≤ c

)
∀t ∈ R

= lim
n→∞

P0

(
sup
t

√
n|Fn(t)− F0(t)| ≤ c

)
= lim
n→∞

P0

(
sup
f∈F

√
n|(Pn − P0)h| ≤ c

)
= lim
n→∞

P0 (||Gn||F ≤ c)

= P0 (||G||F ≤ c)

= (1− α)

9.6.2 Proving Asymptotic Linearity and Delta Method for ALEs

Example 9.22 (Coefficient of Variation is ALE). Let Cn := σn

µn
be the plug-in estimator for C0 := σ0

µ0
.

Let h(u, v) = u1/2v−1 and let C0 := h(σ2
0 , µ0), Cn := h(σ2

n, µn). We know that:(
σ2
n

µn

)
−
(
σ2
0

µ0

)
=

1

n

n∑
i=1

(
(Xi − µ0)

2 − σ2
0

(Xi − µ0)

)
+ oP (n

−1/2)

By the Delta Method for ALEs/Influence Functions, we have

Cn − C0 = h(σ2
n, µn)− h(σ2

0 , µ0) =
1

n

n∑
i=1

〈
∇h(σ2

0 , µ0)
T ,

(
(Xi − µ0)

2 − σ2
0

(Xi − µ0)

)〉
+ oP (n

−1/2)

=
1

n

n∑
i=1

〈(
1

2σ0µ0
,−σ0

µ2
0

)T (
(Xi − µ0)

2 − σ2
0

(Xi − µ0)

)〉
+ oP (n

−1/2)

=
1

n

n∑
i=1

(Xi − µ0)
2 − σ2

0

2µ0σ0
− σ0(Xi − µ0)

µ2
0

+ oP (n
−1/2)

=
1

n

n∑
i=1

µ0(Xi − µ0)
2 − µ0σ

2
0 − 2σ2

0(Xi − µ0)

2µ2
0σ0

+ oP (n
−1/2)

=
1

n

n∑
i=1

C0

[
µ2
0(Xi − µ0)

2 − µ2
0σ

2
0 − 2µ0σ

2
0(Xi − µ0)

2µ2
0σ

2
0

]
+ oP (n

−1/2)

=
1

n

n∑
i=1

C0

[
1

2

(
Xi − µ0

σ0

)2

− Xi

µ0
+

1

2

]
+ oP (n

−1/2)

So Cn is asymptotically linear with influence function ϕP0
(x) := C0

[
1
2

(
x−µ0

σ0

)2
− x

µ0
+ 1

2

]
Example 9.23 (Average Absolute Deviation from Mean is ALE). Suppose we wish to infer about
ψ0 :=

∫
P0|x− µ0| for µ0 =

∫
xdP0(x). Consider the plug-in estimator:

ψn :=
1

n

n∑
i=1

|Xi − X̄n|
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Noting that ψn = Pnfn and ψ0 = P0f0 for fn(x) = |x−X̄n| and f0(x) = |x−µ0|, we write the following
expansion

ψn − ψ0 = (Pn − P0)f0 + P0(fn − f0) + (Pn − P0)(fn − f0)

Where term 1 is linear. The other two terms require further inspection. Let’s study term 2. Letting
h(u) : u→

∫
|x− u|dP0(x), we have that

P0(fn − f0) = h(X̄n)− h(µ0) = h′(µ0)(X̄n − µ0) + oP (n
−1/2) =

1

n

n∑
i=1

h′(µ0)(Xi − µ0) + oP (n
−1/2)

By the delta method. Let F0(u) :=
∫
I(x < u)dP0(x) and G0(u) =

∫
I(x < u)xdP0(x). Then h(u) is

given by

h(u) =

∫
|x− u|dP0(x) =

∫
(u− x)I(x < u)dP0(x) +

∫
(x− u)I(x > u)dP0(x)

=

∫
(u− x)I(x < u)dP0(x) +

∫
(x− u)(−I(x < u) + 1)dP0(x)

= uF0(u)−G0(u) +

∫
(u− x)I(x < u)dP0(x) +

∫
(x− u)dP0(x)

= 2uF0(u)− 2G0(u)− u+ µ0

= u[2F0(u)− 1] + [µ0 − 2G0(u)]

Therefore

h′(u) = 2F0(u)− 1 =⇒ h′(µ0) = 2F0(µ0)− 1

Now we study term 3. Note that |(fn − f0)| = ||x − X̄n| − |x − µ0|| ≤ |µ0 − X̄n|. Therefore, the total
variational norm of (fn − f0) ≤ 2|µ0 − X̄n|. The WLLN says that there will exist a constant K < ∞
such that |µ0 − X̄n| < K w.p. 1. Thus, the function class is bounded in total variation and is therefore
Donsker. Therefore,

(Pn − P0)(fn − f0) = oP (n
−1/2)

The result is that

ψn − ψ0 =
1

n

n∑
i=1

[|Xi − µ0| − ψ0 + [2F0(µ0)− 1](Xi − µ0)] + oP (n
−1/2)

Example 9.24 (IPW Estimator is ALE). Suppose X = (Y,∆,W ) with Y the outcome of interest
only observed when ∆ = 1. W are covariates. Suppose we wish to infer about the mean of Y . If the
missingness mechanism only depends on W (MAR), the mean outcome is

ψ0 = E0[E0(Y |∆ = 1,W )]

Let Q̃0(w) := E0(Y |∆ = 1,W = w), g0(w) := P0(∆ = 1|W = w), QW,0(w) := P0(W ≤ w). We can
now write

ψ0 = E0[Q̃0(W )] = E0

[
E0

[
∆Y

g0(W )

∣∣Y ]]
Case 1: If g0 is known, this motivates the following plug-in estimator:

ψ0,n :=
1

n

n∑
i=1

∆iYi
g0(Wi)

= Pnf0
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Which is linear with influence function ϕP0(x) : x→ δy
g0(w) − ψ0.

Case 2: If the missingness probability is unknown, but is known to lie in a parametric model {gθ : θ ∈ Θ}
with g0 = gθ0 . Suppose we have an ALE θn for θ0 with influence function φθ0 . Letting gn := gθn and
fn(x) :=

δy
gn(w) , we can consider the new plug-in estimator

ψn :=
1

n

n∑
i=1

∆iYi
gn(Wi)

= Pnfn

To show this estimator is asymptotically linear, examine the expansion

ψn − ψ0 = (Pn − P0)f0 + P0(fn − f0) + (Pn − P0)(fn − f0)

Study term 2. First note that gn(w)− g0(w) =
∂
∂θgθ(w)

∣∣∣
θ=θ0

(θn− θ)+ oP (n
−1/2) by Taylor expansion.

Now Term 2 takes form

P0(fn − f0) =

∫
Q̃0(w, 1)g0(w)

[
1

gn(w)
− 1

g0(w)

]
QW,0(dw)

= −
∫
Q̃0(w, 1)

1

g0(w)
[gn(w)− g0(w)]QW,0(dw) + oP (n

−1/2)

= −
∫
Q̃0(w, 1)

1

g0(w)

[
∂

∂θ
gθ(w)

∣∣∣
θ=θ0

(θn − θ)

]
QW,0(dw) + oP (n

−1/2)

= −
∫
Q̃0(w, 1)

1

g0(w)

[
∂

∂θ
gθ(w)

∣∣∣
θ=θ0

(
1

n

n∑
i=1

φθ0(Xi)

)]
QW,0(dw) + oP (n

−1/2)

=
1

n

n∑
i=1

γ0φθ0(Xi) + oP (n
−1/2)

For γ0 = −
∫
Q̃0(w, 1)

1
g0(w)

∂
∂θgθ(w)

∣∣∣
θ=θ0

QW,0(dw).

Term 3 requires that (fn − f0) falls in a Donsker class with probability approaching 1.
Under this condition ψn is asymptotically linear with influence function

ϕ∗P0
(x) := ϕP0

(x) + γ0φθ0(Xi)

Thus if θn is an asymptotically linear (and parametric efficient) estimator of θ0, we can obtain smaller
variance than the Case 1 estimator!

Example 9.25 (Absolute Mean Difference and Gini Index is ALE (Theory Exam 2020)). Suppose

X1, . . . , Xn
iid∼ P0 ∈ M where M is the set of all nonparametric distributions on (0,∞) with finite

second moment. Define δ0 := ∆(P0) to be the population mean absolute difference parameter for
X1, X2 independent draws from P

P → ∆(P ) := EP |X1 −X2|

Step 1: Plug-in Est ALE: First, we show ∆(Pn) is an ALE and derive its distribution. We start
with the associated V-statistic

∆(P ) =

∫ ∫
|x1 − x2|dP (x1)dP (x2)

Vn =
1

n2

n∑
i=1

n∑
i=1

|Xi −Xj |
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By a linearization argument, we can show that the expansion of Vn−∆(P0) is dominated by the following
term

2(Pn − P0)

∫
|x− u|du

=⇒ Vn −∆(P0) =
1

n

n∑
i=1

2

(∫
|Xi − u|dP0(u)−∆(P0)

)
+ oP (n

−1/2)

However, the V-statistic is not exactly ∆(Pn) because the statistic is defined in terms of independent
X1, X2, and we have some repeated indices. Instead, we define ∆(Pn) as the U-statistic

Un = ∆(Pn) =
2

n(n− 1)

n∑
i=1

∑
j<i

|Xi −Xj | ≡
1

n(n− 1)

n∑
i=1

∑
j ̸=i

|Xi −Xj |

By a similar linearization argument and Hajek projection we can show Un − Vn = O(n−1) implying

Un −∆(P0) = (Vn −∆(P0)) + (Un − Vn)

= 2(Pn − P0)

∫
|x− u|dP0(u) + op(n

−1/2)

Implies Un = ∆(Pn) is ALE with influence function

ϕ(x) = 2

(∫
|x− u|dP0(u)−∆(P0)

)
Therefore,

√
n(∆(Pn)−∆(Pn))⇝ N

(
0, 4

[
EP0 [EP0 [|X − U ||X]2 − 2EP0 [|X − U ||X]δ0 + δ20 ]

])
≡ N

(
0, 4

[
EP0

[EP0
[|X − U ||X]2]− δ20

])
Step 2: Show Gini Index is ALE: let ψ0 := Ψ(P0) be the Gini Index functional

P → Ψ(P ) :=
EP |X1 −X2|

2EP (X)

Show plug-in Gini index Ψ(Pn) is asymptotically linear. We use the delta method for ALEs to accom-
plish this. Define f(a, b) = a

b . We can write

Ψ(Pn) = f(∆(Pn), Pn(X)) =
∆(Pn)

PnX

Which is asymptotically linear by the delta method for ALEs. The influence function is as follows

ϕ̃(x) = ⟨∇f(δ0, P0(X)), ϕP0
⟩

=
2
(∫

|x− u|dP0(u)−∆(P0)
)

P0(X)
− δ0(x− P0(X))

P0(X)2

= 2

[
EP0

|X − x| − (x+ µ0)ψ0

µ0

]
Step 3 (Derive Tangent Space): Suppose the true mean outcome is known. M is known such that
M0 := {P ∈ M : EP (X) = µ0}. To derive the tangent space of a model under a moment restriction
we take the following steps.

(a) Propose a submodel: I elect the linear one for simplicity pθ = [1 + θh]p0(x)

(b) Write the moment restriction: g0(X) := X − µ0 such that EP (g0) = 0

64



Ethan Ashby Theory Exam Cheatsheet 2022-2023 Academic Year

(c) Evaluate the scores h that allow us to remain in our model M

Pθ(g0) = 0

=⇒
∫
g0(1 + θh)p0(x)dx =

∫
(x− µ0)(1 + θh)p0(x)dx = 0

=⇒
∫
xp0(x)dx+ θ

∫
xhp0(x)dx− µ0

∫
(1 + θh)p0(x)dx = 0

=⇒ µ0 + θ

∫
xhp0(x)dx− µ0 = 0

=⇒ P0(Xh(X)) = 0

Thus, the tangent space takes the form TM0
(P0) := {h ∈ L2

0(P0) :
∫
xh(x)dP0(x) = 0} at P0.

Example 9.26 (Robust Mean is ALE (P6 Theory Exam 2021)). Let X1, . . . , Xn
iidP0 ∈ M where M

is the nonparametric model with finite second moment and strictly positive density on the nonnegative
real numbers. We wish to estimate ψ0 = ψ(F0)

ψ(F ) := EF [XI(X ≤ Qβ(F ))] =

∫ Qβ(F )

0

udF (u)

Where Qβ(F ) is the β-quantile of F . Let µ0 := µ(F0), µn := µ(Fn) and q0 := Qβ(F0). Also note that

the Gateaux derivative of Qβ at F in direction h is given by Q̇β(F ;h) =
−h(Qβ(F ))
f(Qβ(F )) .

(a) Calculate Gauteaux derivative of ψ. Using the fundamental theorem of calculus and product
rule, the Gauteaux derivative is defined as

ψ̇(F ;h) =
d

dϵ
ψ(F + ϵh)

∣∣
ϵ=0

=
d

dϵ

[∫ Qβ(F+ϵh)

0

udF (u) + ϵ

∫ Qβ(F+ϵh)

0

udh(u)

] ∣∣∣
ϵ=0

=
d

dϵ

[∫ Qβ(F+ϵh)

0

uf(u)du+ ϵ

∫ Qβ(F+ϵh)

0

udh(u)

] ∣∣∣
ϵ=0

= Qβ(F + ϵh)f(Qβ(F + ϵh)) · Q̇β(F ;h) +
∫ Qβ(F+ϵh)

0

udh(u) + ϵ
(
Qβ(F + ϵh)Q̇β(F ;h)

) ∣∣∣
ϵ=0

= Qβ(F + ϵh) (f(Qβ(F + ϵh)))

(
−h(Qβ(F ))
f(Qβ(F ))

)
+

∫ Qβ(F+ϵh)

0

udh(u) + ϵ
(
Qβ(F + ϵh)Q̇β(F ;h)

) ∣∣∣
ϵ=0

=

∫ Qβ(F )

0

udh(u)−Qβ(F )h(Qβ(F ))

(b) Asymptotic Linearity and Influence Function. By the Functional Delta method, we know
that ψn = ψ(Fn) is asymptotically linear with influence function equal to the Gauteax derivative
(under Hadamard differentiability wrt supremum norm):

ψ(Fn)− ψ(F0) =
1

n

n∑
i=1

ψ̇(F0; I(Xi ≤ ·)− F0) + oP (n
−1/2)
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To calculate the influence function, we look to part (a). Recalling q0 = Qβ(F0):

ψ̇(F0; I(Xi ≤ ·)− F0) =

∫ Qβ(F0)

0

u (I(Xi ≤ ·)− F0)(du)−Qβ(F0) [I(Xi ≤ Qβ(F0))− F0(Qβ(F ))]

=

∫ q0

0

u (I(Xi ≤ ·)− F0)(du)− q0 [I(Xi ≤ q0)− β]

=

∫ q0

0

u d(I(Xi ≤ u))− ψ0 − q0I(Xi ≤ q0) + βq0

= (x− q0)I(Xi ≤ q0)− ψ0 + βq0

(c) Show that
√
n(µn − µ0) where µn is the sample mean. We solve for the variance of X using the

law of total variance with A1 = I(x ≤ q0), A2 = I(x > q0) which partition the outcome space.

Var(X) =

2∑
i=1

P (Ai) ·Var(X|Ai) +

[
2∑
i=1

E[X|Ai]2[1− P (Ai)][P (Ai)]

]
− 2E[X|A1]P (A1)E[X|A2]P (A2)

= βVar(X|X ≤ q0) + (1− β)Var(X|X > q0) + β(1− β) (E[X|X ≤ q0]− E[X|X > q0])
2

(d) Compare the asymptotic variances of
√
n(ψn − ψ0) to

√
n(µn − µ0) via the asymptotic relative

efficiency: comparing the squares of each of the influence functions:

E
(
[(x− q0)I(x ≤ q0)]

2 − 2(x− q0)I(x ≤ q0)(ψ0 − βq0) + (ψ0 − βq0)
2
)

E
(
[x− µ0]

2
)

=
E
(
{xI(x ≤ q0)− ψ0 − (q0I(x ≤ q0)− βq0)}2

)
E
(
[x− µ0]

2
)

=
E
(
{xI(x ≤ q0) − ψ0}2 − 2{xI(x ≤ q0) − ψ0}{q0I(x ≤ q0)− βq0)}+ {q0I(x ≤ q0)− βq0)}2

)
E
(
[x− µ0]

2
)

=
Var(X|X ≤ q0)− 2ψ0q0 + 2ψ0βq0 + 2ψ0βq0 − 2ψ0βq0 + q20β − 2β2q20 + β2q20

Var(X)

=
Var(X|X ≤ q0)− 2ψ0q0(1− β) + q20β(1− β)

Var(X)
=

Var(X|X ≤ q0)− q0(1− β)(2ψ0 − q0β)

Var(X)

Thus, as long as (2ψ − q0β) > 0 then we are assured a reduction in variance compared to the
sample mean. This makes sense because the influence function of the trimmed mean is bounded
and therefore is robust to outliers.

9.7 Efficient Estimators

Example 9.27 (Efficient Estimators Under Moment Restriction (P7 Theory Exam 2021)). Suppose

X1, . . . , Xn
iid∼ P0 ∈M where M is the nonparametric model of each distribution P satisfying Pf20 <∞

with support in (−B,+B) for a fixed f0. Suppose we wish to estimate the mean of f0: ψ0 = P0f0.

Consider a multivariate g0 : Rm → R that is bounded and consider the model containing the collection
of distributions with the moment restriction based on the multivariate function M0 := {P ∈ M :
Pmg0 = 0}.
The tangent space of M0 at P is given by

TM0
(P ) := {h ∈ L2

0(P ) :

∫
h(x)ḡP (X)dP (x) = 0}

Where ḡP = Pm−1g0.
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(a) Derive form of projection onto tangent space. Consider an arbitrary element s∗ ∈ L2
0(P ).

The projection Π(s|TM ) onto the tangent space satisfies the following property.

⟨s−Π(s|TM ), aḡp(X)⟩ = 0

This property ensures that the set of allowable scores s − Π(s|TM ) satisfies the desired moment
restriction. Note that the model space is a linear span, so Π(s|TM ) is given by

a = argmin
a

||s− aḡp||2L2(P )

=⇒ ∂

∂a

[
P (s2)− 2aP (sḡp) + a2P (ḡ2p)

]
= 0

=⇒ a∗ =

∫
sḡP dP∫
ḡ2P dP

Taken together implying the form of the projection onto the tangent space is

s∗ = s(x)− a∗ḡp

= s(x)−
∫
sḡP dP∫
ḡ2P dP

ḡp

The last condition we need to check is that s∗ actually lives in the tangent space. To verify this∫
s∗(x)ḡP (x)dP (x) =

∫ (
s(x)−

∫
sḡP dP∫
ḡ2P dP

ḡP

)
ḡP (x)dP (x)

=

∫
(sḡP (x)− sḡP )dP = 0

(b) Canonical gradient: Note that ψ0 has nonparametric influence function ϕ(x) = f0(x) − ψ0

where µ0 := E[X]. Using the fact above, we have that the canonical gradient/EIF is obtained by
projecting ϕ(x) onto TM .

ϕ∗(x) = f0(x)− ψ0 −
∫
(f0(x)− ψ0)ḡP dP∫

ḡ2P (x)dP
ḡp(x)

= f0(x)− ψ0 −
∫
f0(x)ḡP dP −�����: 0∫

ψ0ḡP dP∫
ḡ2P (x)dP

ḡp(x)

= f0(x)− ψ0 −
∫
f0(x)ḡP dP∫
ḡ2P (x)dP

ḡp(x)

Where the cancellation occurred because
∫
ḡP dP = 0 in M0.

(c) Efficient One-Step Estimator: an asymptotically efficient estimator in M0 can be obtained by
taking the plug-in estimator and adding the empirical mean of the EIF.

ψ∗(Pn) = ψ(Pn) + Pnϕ
∗(x)

= Pnf0(Xi) +
����������:0

Pn(f0(Xi)− ψ(Pn))− Pn

(
Pn(f0(X)Pm−1

n g0)

Pn(P
m−1
n g0)2

Pm−1
n g0

)
= Pnf0(Xi)−

Pn(f0(X)ḡn)

Pn(ḡn)2
Pn(P

m−1
n g0)

Let’s inspect the last term. Recognizing g0 is P0-mean-zero, by linearization we have:

Pmn g0 = (Pmn − Pm0 )g0

= m(Pn − P )ḡP (x) + oP (n
−1/2) = mPnḡP (x) + oP (n

−1/2)

=⇒ PnḡP =
Pmn g0
m
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Substituting in the original expression, we have an

ψ∗(Pn) = Pnf0(Xi)−
1

m

Pn(f0(X)ḡn)

Pn(ḡn)2
Pmn g0

Which is the efficient one-step estimator.

(d) Example: If E[(X − µ0)
3] = 0, show the sample mean is efficient for the population mean in a

population with known variance.
We know the sample mean PnX has nonparametric influence function of ϕ(x) = x−µ0. To show
it is efficient in M0, we must show that the second term in the EIF derived above is 0. Define
g0(x1, x2) =

1
2 (x1 − x2)− σ2 (known) such that P 2g0 = 0.∫

(x1 − µ0)

[∫
1

2
(x1 − x2)

2 − σ2dP (x2)

]
dP (x1)

=

∫
(x1 − µ0)

[∫
1

2
((x1 − µ0)− (x2 − µ0))

2dP (x2)

]
dP (x1)

�����������:0

−σ2

∫
(x1 − µ0dP (x1)

=
1

2

∫ ∫
(x1 − µ0)

(x1 − µ0)
2 −

����������:0

2(x1 − µ0)(x2 − µ0) + (x2 − µ0)
2

 dP (x1)dP (x2)

=
1

2

∫ (x1 − µ0)
3dP (x1) +

∫ 
���

���*
0∫

(x1 − µ0)dP1(x1)

 (x2 − µ0)
2dP (x2)


= 0

Where the last step holds because E[(X − µ0)
3] = 0. Thus, the nonparametric influence function

equals the EIF under this model, so the sample mean is efficient for the population mean.
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